Advertisement

Evolutionary Ecology

, Volume 24, Issue 5, pp 1031–1044 | Cite as

Natural selection on cork oak: allele frequency reveals divergent selection in cork oak populations along a temperature cline

  • J. A. Ramírez-Valiente
  • Z. Lorenzo
  • A. Soto
  • F. Valladares
  • L. Gil
  • I. ArandaEmail author
Original Paper

Abstract

A recent study of population divergence at neutral markers and adaptive traits in cork oak has observed an association between genetic distances at locus QpZAG46 and genetic distances for leaf size and growth. In that study it was proposed that certain loci could be linked to genes encoding for adaptive traits in cork oak and, thus, could be used in adaptation studies. In order to investigate this hypothesis, here we (1) looked for associations between molecular markers and a set of adaptive traits in cork oak, and (2) explored the effects of the climate on among-population patterns in adaptive traits and molecular markers. For this purpose, we chose 9-year-old plants originating from thirteen populations spanning a broad range of climatic conditions. Plants established in a common garden site were genotyped at six nuclear microsatellites and phenotypically characterized for six functional traits potentially related to plant performance. Our results supported the proposed linkage between locus QpZAG46 and genes encoding for leaf size and growth. Temperature caused adaptive population divergence in leaf size and growth, which was expressed as differences in the frequencies of the alleles at locus QpZAG46.

Keywords

Quercus suber Natural selection Overdominance Dominance Additive effects Adaptation 

Notes

Acknowledgments

This study was funded by the Spanish Ministry of Environment and DGB (Convenio UPM-DGB), the Spanish Ministry of Science and Innovation (PLASTOFOR, AGL-00536/FOR and BOSALIM, CGL2007-66066-C04-02/CGL2007-66066-C04-03 projects and BES-2005-7573 fellowship). We thank Pedro Díaz-Fernández, Laura Castro, Regina Chambel, José María Climent, Pilar Jiménez and the rest of the people who collaborated in the setting up of the cork oak field common gardens under the EU concerted action on cork oak, FAIR I CT 95 0202. We thank to AEMET (Agencia estatal de Meteorología) for providing the climatic data. We thank Matthew Robson who made a thorough review of the English version and contributed with valuable suggestions. We thank Santiago de Blas, José Antonio Mancha and other field assistants for their help during the experiment. We are grateful to Salustiano Iglesias and DGB for the maintenance of the common gardens. Finally, we would like to thank to Santiago González-Martínez for his useful suggestions and comments on the final version of the manuscript.

Supplementary material

10682_2010_9365_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 47 kb)

References

  1. Aranda I, Castro L, Alía R, Pardos JA, Gil L (2005) Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiol 25:1085–1090PubMedGoogle Scholar
  2. Aranda I, Pardos M, Puértolas J, Jiménez MD, Pardos JA (2007) Water use efficiency in cork oak (Quercus suber L.) is modified by the interaction of water and light availabilities. Tree Physiol 27:671–677PubMedGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300Google Scholar
  4. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155CrossRefGoogle Scholar
  5. Brendel O, Le Thiec D, Scotti-Saintagne C, Kremer A, Guehl JM (2008) Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet Genom 4:263–278CrossRefGoogle Scholar
  6. Burgarella C, Lorenzo Z, Jabbour-Zahab R, Lumaret R, Guichoux E, Petit RJ, Soto A, Gil L (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q.ilex). Heredity 102:442–452CrossRefPubMedGoogle Scholar
  7. Casper BB, Forseth IN, Wait DA (2005) Variation in carbon isotope discrimination in relation to plant performance in a natural population of Cryptantha flava. Oecologia 145:541–548CrossRefGoogle Scholar
  8. Cobb N, Mitton JB, Whitham TG (1994) Genetic variation associated with chronic water and nutrient stress in pinyon pine. Am J Bot 81:936–940CrossRefGoogle Scholar
  9. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679CrossRefPubMedGoogle Scholar
  10. Davis MB, Zabinski C (1992) Changes in geographical range resulting from greenhouse warming effects on biodiversity in forests. In: Peters RL, Lovejoy TL (eds) Global warming and biological diversity. Yale University Press, New Haven, pp 298–308Google Scholar
  11. Díaz-Fernández PM, Jiménez P, Catalán G, Martín S, Gil L (1995) Regiones de procedencia de Quercus suber L. ICONA, Madrid 49 pGoogle Scholar
  12. Donovan LA, Dudley SA, Rosenthal DM, Ludwig F (2007) Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers. Oecologia 152:13–25CrossRefPubMedGoogle Scholar
  13. Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 13:13–15Google Scholar
  14. Dudley SA (1996) Differing selection on plant physiological traits in response to environmental water availability: a test of adaptive hypotheses. Evolution 50:92–102CrossRefGoogle Scholar
  15. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, EssexGoogle Scholar
  16. Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552CrossRefGoogle Scholar
  17. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 1:121–137CrossRefGoogle Scholar
  18. Gandour M, Khouja ML, Toumi L, Triki S (2007) Morphological evaluation of cork oak (Quercus suber): Mediterranean provenance variability in Tunisia. Ann Forest Sci 64:549–555CrossRefGoogle Scholar
  19. García LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663CrossRefGoogle Scholar
  20. Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175:399–409CrossRefPubMedGoogle Scholar
  21. González-Martínez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101:19–26CrossRefPubMedGoogle Scholar
  22. Hamrick JL, Allard RW (1972) Microgeographical variation in allozyme frequencies in Avena barbata. Proc Natl Acad Sci USA 69:2100–2104CrossRefPubMedGoogle Scholar
  23. Hamrick JL, Holden LR (1979) Influence of microhabitat heterogeneity on gene frequency distribution and gametic phase disequilibrium in Avena barbata. Evolution 33:521–533CrossRefGoogle Scholar
  24. Higgins PAT, Harte J (2006) Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience 56:407–417CrossRefGoogle Scholar
  25. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108CrossRefPubMedGoogle Scholar
  26. Huestis DL, Marshall JL (2006) Is natural selection a plausible explanation for the distribution of Idh-1 alleles in the cricket Allonemobius socius? Ecol Entomol 41:91–98CrossRefGoogle Scholar
  27. IPCC (2007) Climate change 2007: the physical basis. contribution of working group i to the fourth assessment of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, SwitzerlandGoogle Scholar
  28. Jiménez P, Agundez D, Alia R, Gil L (1999) Genetic variation in central and marginal populations of Quercus suber L. Silvae Genet 48:278–284Google Scholar
  29. Jump AS, Hunt JM, Martinez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: Temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480CrossRefPubMedGoogle Scholar
  30. Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186CrossRefGoogle Scholar
  31. Kawecki TJ, Ebert T (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241CrossRefGoogle Scholar
  32. Kelly CK, Chase MW, de Bruijn A, Fay MF, Woodward FI (2003) Temperature-based population segregation in birch. Ecol Lett 6:87–89CrossRefGoogle Scholar
  33. Li YC, Fahima T, Beiles A, Korol AB, Nevo E (1999) Microclimatic stress and adaptive DNA differentiation in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 98:873–883CrossRefGoogle Scholar
  34. Li YC, Fahima T, Krugman T, Krugman T, Beiles A, Röder MS, Korol AB, Nevo E (2000) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv Genet 1:191–207CrossRefGoogle Scholar
  35. Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nat Genet 36:512–517CrossRefPubMedGoogle Scholar
  36. Mitton JB (1997) Selection in natural populations. Oxford University Press, New YorkGoogle Scholar
  37. Mitton JB, Duran KL (2004) Genetic variation in pinyon pine, Pinus edulis, associated with summer precipitation. Mol Ecol 13:1259–1264CrossRefPubMedGoogle Scholar
  38. Mitton JB, Stutz HP, Schuster WSF, Shea KL (1989) Genotypic differentiation at PGM in Engelmann spruce from wet and dry sites. Silvae Genet 38:217–221Google Scholar
  39. Mitton JB, Grant MC, Yoshino AM (1998) Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture. Am J Bot 85:1262–1265CrossRefGoogle Scholar
  40. Mullen LM, Hoekstra HE (2008) Natural selection along an environmental gradient: a classic cline in mouse pigmentation. Evolution 62–7:1555–1570CrossRefGoogle Scholar
  41. Owuor ED, Fahima T, Beiles A, Korol A, Nevo E (1997) Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum. Mol Ecol 6:1177–1187CrossRefGoogle Scholar
  42. Owuor ED, Beharav A, Fahima T, Krzhner VM, Korol AB, Nevo E (2003) Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genetic Resour Crop Evol 50:213–223CrossRefGoogle Scholar
  43. Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009a) Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). Forest Ecol Manag 257:1676–1683CrossRefGoogle Scholar
  44. Ramírez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I (2009b) Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Mol Ecol 18:3803–3815CrossRefPubMedGoogle Scholar
  45. Rank NE, Dahlhoff EP (2002) Allele frequency shifts in response to climate change and physiological consequences of allozyme variation in a montane insect. Evolution 56:2278–2289PubMedGoogle Scholar
  46. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  47. Reich PB, Waters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734CrossRefPubMedGoogle Scholar
  48. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  49. Savolainen O, Hedrick P (1995) Heterozygosity and fitness: no association in Scots Pine. Genetics 140:755–766PubMedGoogle Scholar
  50. Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619CrossRefGoogle Scholar
  51. Schmidt PS, Rand DM (2001) Adaptive maintenance of genetic polymorphism in an intertidal barnacle: habitat- and life-stage-specific survivorship of MPI genotypes. Evolution 55:1336–1344PubMedGoogle Scholar
  52. Scotti-Saintagne C, Mariette S, Porth I, Goiecoechea PG, Barreneche T, Bodénès C, Burg K, Kremer A (2004) Genome scanning for interspecific differentiation between two closely related oak species (Quercus robur L. and Q. petraea (Matt.) Liebl.). Genetics 168:1615–1626CrossRefPubMedGoogle Scholar
  53. Soto A, Lorenzo Z, Gil L (2003) Nuclear microsatellite markers for the identification of Quercus ilex L. and Q. suber L. hybrids. Silvae Genet 52:63–66Google Scholar
  54. Soto A, Lorenzo Z, Gil L (2007) Differences in fine-scale genetic structure and dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of mediterranean open woods. Heredity 99:601–607CrossRefPubMedGoogle Scholar
  55. Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glossl J (1997) Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096CrossRefPubMedGoogle Scholar
  56. Stutz HP, Mitton JB (1988) Genetic variation in Engelmann spruce associated with soil moisture. Arct Alp Res 20:461–465CrossRefGoogle Scholar
  57. Thumma BR, Nolan MR, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265CrossRefPubMedGoogle Scholar
  58. Toumi L, Lumaret R (1998) Allozyme variation in cork oak (Quercus suber L.): the role of phylogeography and genetic introgression by other Mediterranean oak species and human activities. Theor Appl Genet 97:647–656CrossRefGoogle Scholar
  59. Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from Panamanian rainforest. Ecology 81:1925–1936CrossRefGoogle Scholar
  60. Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 146:749–763CrossRefGoogle Scholar
  61. Watt WB (1992) Eggs, enzymes, and evolution: natural genetic variants change insect fecundity. Proc Natl Acad Sci USA 89:10608–10612CrossRefPubMedGoogle Scholar
  62. Watt WB, Carter PA, Blower SM (1985) Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics 109:157–175PubMedGoogle Scholar
  63. White TL, Adams WT, Neale DB (2007) Forest genetics. CAB International, Wallingford, UKCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. A. Ramírez-Valiente
    • 1
    • 3
  • Z. Lorenzo
    • 2
    • 3
  • A. Soto
    • 2
    • 3
  • F. Valladares
    • 4
    • 5
  • L. Gil
    • 2
    • 3
  • I. Aranda
    • 1
    • 2
    • 3
    Email author
  1. 1.Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación ForestalMadridSpain
  2. 2.G.I. Genética y Fisiología Forestal. ETSI Montes Universidad Politécnica de MadridMadridSpain
  3. 3.Unidad Mixta de Genética y Ecofisiología Forestal INIA-UPMMadridSpain
  4. 4.Instituto de Recursos Naturales, Centro de Ciencias Medioambientales, CSICMadridSpain
  5. 5.Departamento de Biología y Geología. Escuela Superior de Ciencias Experimentales y TecnológicasUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations