Advertisement

Evolutionary Ecology

, Volume 24, Issue 5, pp 1199–1218 | Cite as

Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae)

  • Jana Jersáková
  • Sílvia Castro
  • Nicole Sonk
  • Kathrin Milchreit
  • Iva Schödelbauerová
  • Till Tolasch
  • Stefan Dötterl
Original Paper

Abstract

Polyploidy has played a key role in plant evolution and diversification. Despite this, the processes governing reproductive isolation among cytotypes growing in mixed-ploidy populations are still largely unknown. Theoretically, coexistence of diploid and polyploid individuals in sympatric populations is unlikely unless cytotypes are prezygotically isolated through assortative pollination. Here, we investigated the pre-mating barriers involved in the maintenance of three co-occurring cytotypes from the genus Gymnadenia (Orchidaceae): tetraploid and octoploid G. conopsea and tetraploid G. densiflora. We assessed differences in flowering phenology, floral morphology, and visual and olfactory cues, which could lead to assortative mating. Gas chromatography coupled with electroantennographic detection was used to identify scent compounds with physiological activity in the two main pollinators, Deilephila porcellus and Autographa gamma. The importance of olfactory cues was also assessed in the field by analysing the moths’ responses to the olfactory display of the plants, and by following the pollinator’s behaviour on artificial arrays. Our complex approach demonstrated that the coexistence of Gymnadenia cytotypes in mixed-ploidy populations was only partly explained by differences in floral phenology, as cytotypes with overlapping flowering (i.e., octoploid G. conopsea and tetraploid G. densiflora) might freely exchange pollen due to only 1 mm differences in spur lengths and the lack of assortative behaviour of pollinators. While floral colour among the cytotypes was similar, floral scent differed significantly. Though both pollinator species seemed to physiologically detect these differences, and the floral scent alone was sufficient to attract them, pollinators did not use this cue to discriminate the cytotypes in the field. The absence of pre-mating barriers among cytotypes, except partial temporal segregation, suggests the existence of other mechanisms involved in the cytotypes’ coexistence. The genetic differences in ITS sequences among cytotypes were used to discuss the cytotype’s origin.

Keywords

Cytotypes Floral volatiles Fragrant orchid Gas chromatography–electroantennographic detection Matting barriers Polyploidy 

Notes

Acknowledgments

We thank I. Jongepierová for locating plant populations, F. Schiestl for helpful comments, A. Kelber for advises on moth vision and S.-L. Steenhuisen for English corrections. We also thank two anonymous reviewers for their helpful suggestions improving the manuscript. The work was financially supported by the GA ASCR No. KJB600870601 to J.J., MSM 6007665801 to the Faculty of Science of University of South Bohemia and the Portuguese Foundation for Science and Technology (SFRH/BPD/41200/2007) to S.C.

Supplementary material

10682_2010_9356_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1584 kb)

References

  1. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream, IllinoisGoogle Scholar
  2. Aldrich J, Cherney BW, Merlin E, Christopherson L (1988) The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Curr Genet 14:137–146CrossRefPubMedGoogle Scholar
  3. Anderson B, Johnson SD (2009) Geographical covariation and local convergence of flower depth in a guild of fly-pollinated plants. New Phytol 182:533–540CrossRefPubMedGoogle Scholar
  4. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UKGoogle Scholar
  5. Anderson B, Alexandersson R, Johnson SD (2009) Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae). Evolution. doi:  10.1111/j.1558-5646.2009.00880.x
  6. Arnold SJ, Verrell PA, Tilley SG (1996) The evolution of asymmetry in sexual isolation: a model and a test case. Evolution 50:1024–1033CrossRefGoogle Scholar
  7. Barrett SCH, Lloyd DG, Arroyo J (1996) Stylar polymorphisms and the evolution of heterostyly. Narcissus (Amaryllidaceae). Floral biology: studies on floral evolution. In: Lloyd DG, Barrett SCH (eds) Animal-pollinated plants. Chapman and Hall, New York, pp 339–376Google Scholar
  8. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower color locus produces a pollinator shift in two monkeyflower species (Mimulus). Nature 426:176–178CrossRefPubMedGoogle Scholar
  9. Brantjes NBM (1978) Sensory responses to flowers in night-flying moths. In: Richards AJ (ed) The pollination of flowers by insects. Academic Press, London, pp 13–19Google Scholar
  10. Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in monounsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822CrossRefGoogle Scholar
  11. Carlsward BS, Whitten WM, Williams NH, Bytebier B (2006) Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Am J Bot 93:770–786CrossRefGoogle Scholar
  12. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  13. Cook LM, Soltis PS (1999) Mating systems of diploid and allotetraploid populations of Tragopogon (Asteraceae). I. Natural populations. Heredity 82:37–244Google Scholar
  14. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MAGoogle Scholar
  15. Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Cambridge, EnviroquestGoogle Scholar
  16. Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 147–198Google Scholar
  17. Dobzhansky T (1940) Speciation as a stage in evolutionary divergence. Am Nat 74:312–321CrossRefGoogle Scholar
  18. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244CrossRefPubMedGoogle Scholar
  19. Dötterl S, Füssel U, Jürgens A, Aas G (2005a) 1, 4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J Chem Ecol 31:2993–2998CrossRefPubMedGoogle Scholar
  20. Dötterl S, Wolfe LM, Jürgens A (2005b) Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213CrossRefPubMedGoogle Scholar
  21. Dötterl S, Jürgens A, Wolfe LM, Biere A (2009) Disease status and population origin effects on floral scent: potential consequences for oviposition and fruit predation in a complex interaction between a plant, fungus, and noctuid moth. J Chem Ecol 35:307–319CrossRefPubMedGoogle Scholar
  22. Dunkelblum E, Gothilf S (1983) Sex pheromone components of the gamma moth, Autographa gamma (L.) (Lepidoptera: Noctuidae). Z Naturforsch C 38:1011–1014Google Scholar
  23. Dworschak W (2001) Versuch einer Gliederung der verschiedenen Erscheinungsformen von Gymnadenia conopsea in Südbayern. Ber Arbeitskrs Heim Orchid 18:193–207Google Scholar
  24. Ellis AG, Johnson SD (1999) Do pollinators determine hybridization patterns in sympatric Satyrium (Orchidaceae) species? Plant Syst Evol 219:137–150CrossRefGoogle Scholar
  25. El-Sayed AM (2008) The Pherobase: database of insect pheromones and semiochemicals. Available from http://www.pherobase.com
  26. Felber F (1991) Establishment of a tetraploid cytotype in a diploid population: effect of a relative fitness of the cytotypes. J Evol Biol 4:195–207CrossRefGoogle Scholar
  27. Felber-Girard M, Felber F, Buttler A (1996) Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531–540CrossRefGoogle Scholar
  28. Grant V (1992) Floral isolation between ornithophilous and sphingophilous species of Ipomopsis and Aquilegia. P Natl Acad Sci USA 89:11828–11831CrossRefGoogle Scholar
  29. Grant V (1994) Modes and origins of mechanical and ethological isolation in angiosperms. P Natl Acad Sci USA 91:3–10CrossRefGoogle Scholar
  30. Gustafsson S, Lönn M (2003) Genetic differentiation and habitat preference of flowering-time variants within Gymnadenia conopsea. Heredity 91:284–292CrossRefPubMedGoogle Scholar
  31. Halverson K, Heard SB, Nason JD, Stireman JO (2008) Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50–58CrossRefGoogle Scholar
  32. Harder LD, Wilson WG (1998) A clarification of pollen discounting and its joint effects with inbreeding depression on mating system evolution. Am Nat 152:684–695CrossRefPubMedGoogle Scholar
  33. Heusser C (1938) Chromosomenverhältnisse bei schweizerischen basitonen Orchideen. Ber Schweiz Bot Ges 48:562–605Google Scholar
  34. Howard DJ (1993) Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 46–69Google Scholar
  35. Howard DJ, Gregory PG, Chu J, Cain ML (1998) Conspecific sperm precedence is an effective barrier to hybridization between closely related species. Evolution 52:511–516CrossRefGoogle Scholar
  36. Huber FK, Kaiser R, Sauter W, Schiestl FP (2005) Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142:564–575CrossRefPubMedGoogle Scholar
  37. Hultén E, Fries M (1986) Atlas of north European vascular plants north of the tropic of cancer, vol 1–3. Koeltz Scientific Books, Königstein, GermanyGoogle Scholar
  38. Husband BC, Sabara HA (2004) Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium. New Phytol 161:703–713CrossRefGoogle Scholar
  39. Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation and coexistence of diploid and tetraploid Chamerion angustifolium. J Ecol 88:689–701CrossRefGoogle Scholar
  40. Husband BC, Schemske DW, Goodwillie C, Burton TL (2002) Pollen competition as a unilateral mechanism of reproductive isolation between diploid and tetraploid Chamerion angustifolium. Proc R Soc Lond 269:2565–2571CrossRefGoogle Scholar
  41. Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51:45–53CrossRefGoogle Scholar
  42. Johnston M (1991) Natural selection on floral traits in two species of Lobelia cardinalis and siphilitica. Evolution 45:1468–1479CrossRefGoogle Scholar
  43. Jones CE (1978) Pollinator constancy as a pre-pollination isolation mechanism between sympatric species of Cercidium. Evolution 32:189–198CrossRefGoogle Scholar
  44. Jones KN (2001) Pollinator-mediated assortative mating: causes and consequences. In: Chittka L, Thompson JD (eds) Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge University Press, Cambridge, UK, pp 259–273CrossRefGoogle Scholar
  45. Kaiser R (1993) Vom Duft der Orchideen. Editiones Roche, BaselGoogle Scholar
  46. Keeler KH (2004) Impact of intraspecific polyploidy in Andropogon gerardii (Poaceae) populations. Am Midl Nat 152:63–74CrossRefGoogle Scholar
  47. Kelber A, Balkenius A, Warrant EJ (2003) Colour vision in diurnal and nocturnal hawkmoths. Integt Comp Biol 43:571–579CrossRefGoogle Scholar
  48. Kennedy BF, Sabara HA, Haydon D, Husband BC (2006) Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150:398–408CrossRefPubMedGoogle Scholar
  49. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  50. Kron P, Suda J, Husband C (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol S 38:847–876CrossRefGoogle Scholar
  51. Levin D (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43CrossRefGoogle Scholar
  52. Lewis WH, Suda Y (1976) Diploids and polyploids from a single species population: temporal adaptations. J Hered 67:391–393Google Scholar
  53. Lexer C, van Loo M (2006) Contact zones: natural labs for studying evolutionary transitions. Curr Biol 16:R407–R409CrossRefPubMedGoogle Scholar
  54. Lloyd DG, Webb CJ (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy. New Zeal J Bot 24:135–162Google Scholar
  55. Lumaret R, Guillerm JL, Delay J, Ait Lhaj Loufti A, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata, L. from Galicia (Spain). Oecologia 73:436–446CrossRefGoogle Scholar
  56. Marhold K, Jongepierová I, Krahulcová A, Kučera J (2005) Morphological and karyological differentiation of Gymnadenia densiflora and G. conopsea in the Czech Republic and Slovakia. Preslia 77:159–176Google Scholar
  57. Mazor M, Dunkelblum E (1992) Role of sex pheromone components in behavioral reproductive isolation between Autographa gamma (L.) and either Trichoplusia ni (Hübner) or Chrysodeixis chalcites (Esp.) (Lepidoptera: Noctuidae: Plusiinae). J Chem Ecol 18:2373–2384CrossRefGoogle Scholar
  58. Meagher RL (2002) Trapping noctuid moths with synthetic floral volatile lures. Entomol Exp Appl 103:219–226CrossRefGoogle Scholar
  59. Moccia MD, Widmer A, Cozzolino S (2007) The strength of reproductive isolation in two hybridizing food-deceptive orchid species. Mol Ecol 16:2855–2866CrossRefPubMedGoogle Scholar
  60. Nilsson LA (1983) Processes of isolation and introgressive interplay between Platanthera bifolia (L.) Rich. and P. chlorantha (Custer) Reichb. (Orchidaceae). Bot J Linn Soc 87:325–350CrossRefGoogle Scholar
  61. Nilsson LA (1988) The evolution of flowers with deep corolla tubes. Nature 334:147–149CrossRefGoogle Scholar
  62. Nuismer SL, Cunningham BM (2005) Selection for phenotypic divergence between diploid and autotetraploid Heuchera grossulariifolia. Evolution 59:1928–1935PubMedGoogle Scholar
  63. Petit C, Lesbros P, Ge X, Thompson JD (1997) Variation in flowering phenology and selfing rate across a contact zone between diploid and tetraploid Arrhenatherum elatiius. Heredity 79:31–40CrossRefGoogle Scholar
  64. Plepys D, Ibarra F, Löfstedt C (2002) Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74CrossRefGoogle Scholar
  65. Raguso RA, Light DM (1998) Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and ‘green-leaf volatiles’. Entomol Exp Appl 86:287–293CrossRefGoogle Scholar
  66. Raguso RA, Willis MA (2005) Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Anim Behav 69:407–418CrossRefGoogle Scholar
  67. Raguso RA, Light DM, Pichersky E (1996) Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J Chem Ecol 22:1735–1766CrossRefGoogle Scholar
  68. Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914CrossRefPubMedGoogle Scholar
  69. Rieseberg LH, Desrochers AM, Youn SJ (1995) Interspecific pollen competition as a reproductive barrier between sympatric species of Helianthus (Asteraceae). Am J Bot 82:515–519CrossRefGoogle Scholar
  70. Riffell JA, Alarcon R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG (2008) Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. P Natl Acad Sci USA 105:3404–3409CrossRefGoogle Scholar
  71. Schiestl FP, Marion-Poll F (2001) Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. In: Jackson JF, Linskens HF, Inman RB (eds) Molecular methods of plant analysis, 21: analysis of taste and aroma. Springer, Berlin, pp 173–198Google Scholar
  72. Segraves KA, Thompson JN (1999) Plant polyploidy and pollination: floral traits and insect visits to diploid and autotetraploid Heuchera grossulariifolia. Evolution 53:1114–1127CrossRefGoogle Scholar
  73. Selosse MA, Bauer R, Moyersoen B (2002) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195CrossRefGoogle Scholar
  74. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288CrossRefGoogle Scholar
  75. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348CrossRefGoogle Scholar
  76. Stahlberg D (2009) Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae). Evol Ecol 23:295–328CrossRefGoogle Scholar
  77. Stebbins GL Jr (1950) Variation and evolution in plants. Columbia University Press, USAGoogle Scholar
  78. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  79. Thompson JN, Merg KF (2008) Evolution of polyploidy and diversification of plant-pollinator interactions. Ecology 89:2197–2206CrossRefPubMedGoogle Scholar
  80. Tothill JC, Hacker JB (1976) Polyploidy, flowering phenology and climatic adaptation in Heteropogon contortus (Gramineae). Aust J Ecol 1:213–222CrossRefGoogle Scholar
  81. Vamosi JC, Goring SJ, Kennedy BF, Mayberry RJ, Moray CM, Neame LA, Tunbridge ND (2007) Elle E (2007) Pollination, floral display, and the ecological correlates of polyploidy. Funct Ecosyst Commun 1:1–9Google Scholar
  82. van Dijk P, Bijlsma R (1994) Simulations of flowering time displacement between two cytotypes that form inviable hybrids. Heredity 72:522–535CrossRefGoogle Scholar
  83. Vöth W (2000) Gymnadenia, Nigritella und ihre Bestäuber. J Eur Orchid 32:547–563Google Scholar
  84. Vöth W, Sontag S (2006) Die intraspezifischen Varietäten der Gymnadenia conopsea (L.). R Br J Eur Orchid 38:581–624Google Scholar
  85. Waser NM (1986) Flower constancy: definition, cause and measurement. Am Nat 127:593–603CrossRefGoogle Scholar
  86. Watts CD, Fisher AE, Shrum CD, Newbold WL, Hansen S, Liu C, Kelchner SA (2008) The D4 Set: primers that target highly variable intron loops in plant chloroplast genomes. Mol Ecol Resour 8:1344–1347CrossRefGoogle Scholar
  87. Young HJ (2008) Selection on spur shape in Impatiens capensis. Oecologia 156:535–543CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jana Jersáková
    • 1
    • 2
  • Sílvia Castro
    • 3
    • 4
  • Nicole Sonk
    • 5
  • Kathrin Milchreit
    • 5
  • Iva Schödelbauerová
    • 1
    • 2
  • Till Tolasch
    • 6
  • Stefan Dötterl
    • 5
  1. 1.Department of Theoretical Ecology, Institute of System Biology and Ecology AS CRČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.Institute of BotanyAcademy of SciencesPrůhoniceCzech Republic
  5. 5.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany
  6. 6.Institut für Zoologie, Fg. TierökologieUniversität HohenheimStuttgartGermany

Personalised recommendations