Evolutionary Ecology

, Volume 24, Issue 4, pp 923–938 | Cite as

Phenotypic plasticity and genetic isolation-by-distance in the freshwater mussel Unio pictorum (Mollusca: Unionoida)

  • A. Zieritz
  • J. I. Hoffman
  • W. Amos
  • D. C. Aldridge
Original Paper


Freshwater mussels (Unionoida) show high intraspecific morphological variability, and some shell morphological traits are believed to be associated with habitat conditions. It is not known whether and which of these ecophenotypic differences reflect underlying genetic differentiation or are the result of phenotypic plasticity. Using 103 amplified fragment length polymorphism (AFLP) markers, we studied population genetics of three paired Unio pictorum populations sampled from two different habitat types (marina and river) along the River Thames. We found genetic differences along the Thames which were consistent with a pattern of isolation by distance and probably reflect limited dispersal via host fish species upon which unionoid larvae are obligate parasites. No consistent genetic differences were found between the two different habitat types suggesting that morphological differences in the degree of shell elongation and the shape of dorso-posterior margin are caused by phenotypic plasticity. Our study provides the first good evidence for phenotypic plasticity of shell shape in a European unionoid and illustrates the need to include genetic data in order properly to interpret geographic patterns of morphological variation.


Amplified fragment length polymorphisms (AFLPs) Morphological variation Morphometrics Phenotypic plasticity Unionidae 


  1. Agrell I (1948) The shell morphology of some Swedish unionides as affected by ecological conditions. Ark Zool 41A:1–30Google Scholar
  2. Ajmone-Marsan J, Valentini A, Cassandro M, Vecchiotti-Antaldi G, Bertoni G, Kuiper M (1997) AFLPTM markers for DNA fingerprinting in cattle. Anim Genet 82:418–426CrossRefGoogle Scholar
  3. Aldridge DC (1997) Reproductive ecology of bitterling (Rhodeus sericeus Pallas) and unionid mussels. Dissertation, University of Cambridge, UKGoogle Scholar
  4. Baker AM, Bartlett C, Bunn SE, Goudkamp K, Sheldon F, Hughes JM (2003) Cryptic species and morphological plasticity in long-lived bivalves (Unionoida: Hyriidae) from inland Australia. Mol Ecol 12:2707–2717CrossRefPubMedGoogle Scholar
  5. Beaumont AR (2008) Dfdist package. Available from http://www.rubic.rdg.ac.uk/~mab/stuff/ (accessed April 2009)
  6. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980CrossRefPubMedGoogle Scholar
  7. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263:1619–1626CrossRefGoogle Scholar
  8. Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914CrossRefPubMedGoogle Scholar
  9. Berg DJ, Cantonwine EG, Hoeh WR, Guttman SI (1998) Genetic structure of Quadrula quadrula (Bivalva: Unionidae): little variation across large distances. J Shellfish Res 17:1365–1373Google Scholar
  10. Bergek S, Björklund M (2007) Cryptic barriers to dispersal within a lake allow genetic differentiation of Eurasian perch. Evolution 61:2035–2041CrossRefPubMedGoogle Scholar
  11. Berrie AD, Bioze BJ (1985) The fish hosts of Unio glochidia in the River Thames. Verh Int Verein Theor Angew Limnol 22:2712–2716Google Scholar
  12. Blažek R, Gelnar M (2006) Temporal and spatial distribution of glochidial larval stages of European unionid mussels (Mollusca: Unionidae) on host fishes. Folia Parasitol 53:98–106PubMedGoogle Scholar
  13. Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21:99–114CrossRefGoogle Scholar
  14. Bolnick DI, Snowberg LK, Patenia C, Stutz WE, Ingram T, Lau OL (2009) Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63:2004–2016CrossRefPubMedGoogle Scholar
  15. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273CrossRefPubMedGoogle Scholar
  16. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758CrossRefPubMedGoogle Scholar
  17. Bouza C, Castro J, Martínez P, Amaro R, Fernández C, Ondina P, Outeiro A, San Miguel E (2007) Threatened freshwater pearl mussel Margaritifera margaritifera L. in NW Spain: low and very structured genetic variation in southern peripheral populations assessed using microsatellite markers. Conserv Genet 8:937–948CrossRefGoogle Scholar
  18. Buhay JE, Serb JM, Dean CR, Parham Q, Lydeard C (2002) Conservation genetics of two endangered unionid bivalve species, Epioblasma florentina walkeri and E. capsaeformis (Unionidae: Lampsilini). J Molluscan Stud 68:385–391CrossRefGoogle Scholar
  19. Caballero A, Quesada H, Rolán-Alvarez E (2008) Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics 179:539–554CrossRefPubMedGoogle Scholar
  20. Conde-Padín P, Carvajal-Rodríguez A, Carballo M, Caballero A, Rolán-Alvarez E (2007) Genetic variation for shell traits in a direct-developing marine snail involved in a putative sympatric ecological speciation process. Evol Ecol 21:635–650CrossRefGoogle Scholar
  21. Crampton JS, Haines AJ (1996) Users’ manual for programs HANGLE, HMATCH and HCURVE for the Fourier shape analysis of two-dimensional outlines. In: Institute of Geological and Nuclear Sciences Science Report, vol 96/37, pp 1–28Google Scholar
  22. Crawley MJ (2002) Statistical computing an introduction to data analysis using S-plus. Wiley, ChichesterGoogle Scholar
  23. Dasmahapatra KK, Hoffman JI, Amos W (2009) Pinniped phylogenetic relationships inferred using AFLP markers. Heredity 103:168–177CrossRefPubMedGoogle Scholar
  24. Davis GM (1983) Relative roles of molecular genetics, anatomy, morphometrics and ecology in assessing relationships among North American Unionidae (Bivalvia). In: Oxford GS, Rollinson D (eds) Protein polymorphism: adaptive and taxonomic significance. Academic Press, London, pp 193–222Google Scholar
  25. Davis GM (1984) Genetic relationships among some North American Unionidae (Bivalvia): Sibling species, convergence, and cladistic relationships. Malacologia 25:629–648Google Scholar
  26. Davis GM, Fuller SLH (1981) Genetic relationships among recent Unionacea (Bivalvia) of North America. Malacologia 20:217–253Google Scholar
  27. Davis GM, Ruff M (1974) Oncomelania hupensis (Gastropoda: Hydrobiidae): hybridization, genetics, and transmission of Schistosoma japonicum. Malacol Rev 6:181–197Google Scholar
  28. Davis GM, Heard WH, Fuller SLH, Hesterman C (1981) Molecular genetics and speciation in Elliptio and its relationships to other taxa of North American Unionidae (Bivalvia). Biol J Linnean Soc 15:131–150CrossRefGoogle Scholar
  29. de Aranzamendi MC, Sahade R, Tatian M, Chiappero MB (2008) Genetic differentiation between morphotypes in the Antarctic limpet Nacella concinna as revealed by inter-simple sequence repeat markers. Mar Biol 154:875–885CrossRefGoogle Scholar
  30. de Wolf H, Backeljau T, Verhagen R (1998) Spatio-temporal genetic structure and gene flow between two distinct shell morphs of the planktonic developing periwinkle Littorina striata (Mollusca: Prosobranchia). Mar Ecol Prog Ser 163:155–163CrossRefGoogle Scholar
  31. Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264CrossRefPubMedGoogle Scholar
  32. Dyer AT, Leonard KJ (2000) Contamination, error, and nonspecific molecular tools. Phytopathology 90:565–567CrossRefPubMedGoogle Scholar
  33. Eagar RMC (1978) Shape and function of the shell: a comparison of some living and fossil bivalve mussels. Biol Rev Cam Philos Soc 53:169–210CrossRefGoogle Scholar
  34. Elderkin CL, Christian AD, Vaughn CC, Metcalfe-Smith JL, Berg DJ (2007) Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): evidence of high dispersal and post-glacial colonization. Conserv Genet 8:355–372CrossRefGoogle Scholar
  35. Geist J, Kuehn R (2005) Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations: implications for conservation and management. Mol Ecol 14:425–439CrossRefPubMedGoogle Scholar
  36. Grobler PJ, Jones JW, Johnson NA, Beaty B, Struthers J, Neves RJ, Hallerman EM (2006) Patterns of genetic differentiation and conservation of the Slabside Pearlymussel, Lexingtonia dolabelloides (Lea, 1840) in the Tennessee drainage. J Molluscan Stud 72:65–75Google Scholar
  37. Guerra-Varela J, Colson I, Backeljau T, Breugelmans K, Hughes RN, Rolán-Alvarez E (2009) The evolutionary mechanism maintaining shell shape and molecular differentiation between two ecotypes of the dogwhelk Nucella lapillus. Evol Ecol 23:261–280CrossRefGoogle Scholar
  38. Hammer Ø, Harper DAT (2006) PAST version 1.57. Available from http://folk.uio.no/ohammer/past/ (accessed April 2009)
  39. Hinch SG, Green RH (1989) The effects of source and destination on growth and metal uptake in freshwater clams reciprocally transplanted among south central Ontario lakes. Can J Zool 67:855–863CrossRefGoogle Scholar
  40. Hinch SG, Bailey RC, Green RH (1986) Growth of Lampsilis radiata (Bivalvia: Unionidae) in sand and mud: a reciprocal transplant experiment. Can J Fish Aquat Sci 43:548–552CrossRefGoogle Scholar
  41. Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612CrossRefPubMedGoogle Scholar
  42. Hoffman JI, Peck LS, Hillyard G, Zieritz A, Clark MS (online early) No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Mar Biol doi:10.1007/s00227-009-1360-5
  43. Huff SW, Campbell D, Gustafson DL, Lydeard C, Altaba CR, Giribet G (2004) Investigations into the phylogenetic relationships of freshwater pearl mussels (Bivalvia: Margaritiferidae) based on molecular data: implications for their taxonomy and biogeography. J Molluscan Stud 70:379–388CrossRefGoogle Scholar
  44. Johannesson K (2003) Evolution in Littorina: ecology matters. J Sea Res 49:107–117CrossRefGoogle Scholar
  45. Johannesson B, Johannesson K (1996) Population differences in behaviour and morphology in the snail Littorina saxatilis: Phenotypic plasticity or genetic differentiation? J Zool 240:475–493CrossRefGoogle Scholar
  46. Källersjö M, von Proschwitz T, Lundberg S, Eldenäs P, Erséus C (2005) Evaluation of IST rDNA as a complement to mitochondrial gene sequences for phylogenetic studies in freshwater mussels: an example using Unionidae from north-western Europe. Zool Scr 34:415–424CrossRefGoogle Scholar
  47. Kat PW (1984) Parasitism and the Unionacea (Bivalvia). Biol Rev Cam Philos Soc 59:189–208CrossRefGoogle Scholar
  48. Luttikhuizen PC, Drent J, Van Delden W, Piersma T (2003) Spatially structured genetic variation in a broadcast spawning bivalve: quantitative vs. molecular traits. J Evol Biol 16:260–272CrossRefPubMedGoogle Scholar
  49. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99CrossRefPubMedGoogle Scholar
  50. Machordom A, Araujo R, Erpenbeck D, Ramos MA (2003) Phylogeography and conservation genetics of endangered European Margaritiferidae (Bivalvia: Unionoidea). Biol J Linnean Soc 78:235–252CrossRefGoogle Scholar
  51. Maitland PS, Campbell RN (1992) Freshwater Fishes of the British Isles. The New Naturalist, vol 75. Harper Collins, LondonGoogle Scholar
  52. Miller NJ, Ciosi M, Sappington TW, Ratcliffe ST, Spencer JL, Guillemaud T (2007) Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance. J Appl Entomol 131:378–385CrossRefGoogle Scholar
  53. Molina RA (2004) Morphological and genetic description of the freshwater mussel, Elliptio complanata (Lightfoot, 1786) in the Cape Fear River system, NC. Dissertation, North Carolina State UniversityGoogle Scholar
  54. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394CrossRefPubMedGoogle Scholar
  55. Mulvey M, Lydeard C, Pyer DL, Hicks KM, Brim-Box J, Williams JD, Butler RS (1997) Conservation genetics of North American freshwater mussels Amblema and Megalonaias. Conserv Biol 11:868–878CrossRefGoogle Scholar
  56. Nagel KO (2000) Testing hypotheses on the dispersal and evolutionary history of freshwater mussels (Mollusca: Bivalvia: Unionidae). J Evol Biol 13:854–865CrossRefGoogle Scholar
  57. Ortmann AE (1920) Correlation of shape and station in freshwater mussels (Naiades). Proc Am Philos Soc 59:268–312Google Scholar
  58. Panova M, Hollander J, Johannesson K (2006) Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Mol Ecol 15:4021–4031CrossRefPubMedGoogle Scholar
  59. Polisky B, Greene P, Garfin DE, McCarthy BJ, Goodman HM, Boyer HW (1975) Specificity of substrate recognition by the EcoRI restriction endonuclease. Proc Natl Acad Sci USA 72:3310–3314CrossRefPubMedGoogle Scholar
  60. Rasband W (2008) ImageJ. Image processing and analysis in Java. Available from http://rsbweb.nih.gov/ij (accessed April 2009)
  61. Serb JM, Buhay JE, Lydeard C (2003) Molecular systematics of the North American freshwater bivalve genus Quadrula (Unionidae: Ambleminae) based on mitochondrial ND1 sequences. Mol Phylogenet Evol 28:1–11CrossRefPubMedGoogle Scholar
  62. Soroka M, Zdanowski B (2001) Morphological and genetic variability of the population of Anodonta woodiana (Lea, 1834) occurring in the heated Konin lakes system. Arch Pol Fish 9:239–252Google Scholar
  63. Stearns SC (1989) The evolutionary significance of phenotypic plasticity. Bioscience 39:436–445CrossRefGoogle Scholar
  64. Tregenza T, Butlin RK (1999) Speciation without isolation. Nature 400:311–312CrossRefPubMedGoogle Scholar
  65. Tudorache C, Viaene P, Blust R, Vereecken H, De Boeck G (2008) A comparison of swimming capacity and energy use in seven European freshwater fish species. Ecol Freshw Fish 17:284–291CrossRefGoogle Scholar
  66. Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale. Université Libre de Bruxelles, Bruxelles, BelgiumGoogle Scholar
  67. Via S, Gomulkiewicz R, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10:212–217CrossRefGoogle Scholar
  68. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  69. Watters GT (1994) Form and function of unionoidean shell sculpture and shape (Bivalvia). Am Malacol Bull 11:1–20Google Scholar
  70. Watts PC (2001) Extraction of DNA from tissue: High salt method. Available from http://www.genomics.liv.ac.uk/animal/RESEARCH/ISOLATIO.PDF (accessed April 2009)
  71. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  72. Yeap KL, Black R, Johnson MS (2001) The complexity of phenotypic plasticity in the intertidal snail Nodilittorina australis. Biol J Linnean Soc 72:63–76CrossRefGoogle Scholar
  73. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913CrossRefPubMedGoogle Scholar
  74. Zieritz A, Aldridge DC (2009) Identification of ecophenotypic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biol J Linnean Soc 98:814–825CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Zieritz
    • 1
  • J. I. Hoffman
    • 1
  • W. Amos
    • 1
  • D. C. Aldridge
    • 1
  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations