Evolutionary Ecology

, Volume 24, Issue 3, pp 527–539 | Cite as

The significance of genome-wide transcriptional regulation in the evolution of stress tolerance

Original paper

Abstract

It is widely recognized that stress plays an important role in directing the adaptive adjustment of an organism to changing environments. However, very little is known about the evolution of mechanisms that promote stress-induced variation. Adaptive transcriptional responses have been implicated in the evolution of tolerance to natural and anthropogenic stressors in the environment. Recent technological advances in transcriptomics provide a mechanistic understanding of biological pathways or processes involved in stress-induced phenotypic change. Furthermore, these studies are (semi) quantitative and provide insight into the reaction norms of identified target genes in response to specific stressors. We argue that plasticity in gene expression reaction norms may be important in the evolution of stress tolerance and adaptation to environmental stress. This review highlights the consequences of transcriptional plasticity of stress responses within a single generation and concludes that gene promoters containing a TATA box are more capable of rapid and variable responses than TATA-less genes. In addition, the consequences of plastic transcriptional responses to stress over multiple generations are discussed. Based on examples from the literature, we show that constitutive over expression of specific stress response genes results in stress adapted phenotypes. However, organisms with an innate capacity to buffer stress display plastic transcriptional responses. Finally, we call for an improved integration of the concept of phenotypic plasticity with studies that focus on the regulation of transcription.

Keywords

TATA box Cis-regulation Microarray Adaptation 

References

  1. Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709CrossRefPubMedGoogle Scholar
  2. Birnby DA, Link EM, Vowels JJ et al (2000) A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155:85–104PubMedGoogle Scholar
  3. Blake WJ, Balazsi G, Kohanski MA et al (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24:853–865CrossRefPubMedGoogle Scholar
  4. Calafato S, Swain S, Hughes S, Kille P, Sturzenbaum SR (2008) Knock down of Caenorhabditis elegans cutc-1 exacerbates the sensitivity toward high levels of copper. Toxicol Sci 106:384–391CrossRefPubMedGoogle Scholar
  5. Cassada RC, Russell RL (1975) Dauerlarva, a post-embryonic developmental variant of nematode Caenorhabditis elegans. Dev Biol 46:326–342CrossRefPubMedGoogle Scholar
  6. Catania F, Kauer MO, Daborn PJ et al (2004) World-wide survey of an accord insertion and its association with DDT resistance in Drosophila melanogaster. Mol Ecol 13:2491–2504CrossRefPubMedGoogle Scholar
  7. Cheviron ZA, Whitehead A, Brumfield RT (2008) Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient. Mol Ecol 17:4556–4569CrossRefPubMedGoogle Scholar
  8. Cossins A, Fraser J, Hughes M, Gracey A (2006) Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity. J Exp Biol 209:2328–2336CrossRefPubMedGoogle Scholar
  9. Cutter AD, Felix MA, Barriere A, Charlesworth D (2006) Patterns of nucleotide polymorphism distinguish temperate and tropical wild isolates of Caenorhabditis briggsae. Genetics 173:2021–2031CrossRefPubMedGoogle Scholar
  10. Daborn PJ, Yen JL, Bogwitz MR et al (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science 297:2253–2256CrossRefPubMedGoogle Scholar
  11. Dalley BK, Golomb M (1992) Gene-expression in the Caenorhabditis elegans Dauer Larva—developmental regulation of Hsp90 and other genes. Dev Biol 151:80–90CrossRefPubMedGoogle Scholar
  12. David JR, Gibert P, Moreteau B (2004) Evolution of reaction norms. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity. Functional and conceptual approaches. Oxford University Press, New York, pp 50–63Google Scholar
  13. Denver DR, Morris K, Streelman JT et al (2005) The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat Genet 37:544–548CrossRefPubMedGoogle Scholar
  14. DeWitt TJ, Scheiner SM (2004) Phenotypic variation from single genotypes. A primer. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity. Functional and conceptual approaches. Oxford University Press, New York, pp 1–9Google Scholar
  15. Dong YM, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. Plos Biol 4:1137–1146CrossRefGoogle Scholar
  16. Ellers J, Marien J, Driessen G, Van Straalen NM (2008) Temperature-induced gene expression associated with different thermal reaction norms for growth rate. J Exp Zool B Mol Dev Evol 310B:137–147CrossRefGoogle Scholar
  17. Fielenbach N, Antebi A (2008) C-elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–2165CrossRefPubMedGoogle Scholar
  18. Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res-Fundam Mol Mech Mutagen 569:3–11CrossRefGoogle Scholar
  19. Frisancho AR (1975) Functional adaptation to high-altitude hypoxia. Science 187:313–319CrossRefPubMedGoogle Scholar
  20. Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257PubMedGoogle Scholar
  21. Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98:1993–1998CrossRefPubMedGoogle Scholar
  22. Gracey AY, Fraser EJ, Li WZ et al (2004) Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci USA 101:16970–16975CrossRefPubMedGoogle Scholar
  23. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226PubMedGoogle Scholar
  24. Hensbergen PJ, Donker MH, Van Velzen MJM et al (1999) Primary structure of a cadmium-induced metallothionein from the insect Orchesella cincta (Collembola). Eur J Biochem 259:197–203CrossRefPubMedGoogle Scholar
  25. Inoue T, Ailion M, Poon S et al (2007) Genetic analysis of Dauer formation in Caenorhabditis briggsae. Genetics 177:809–818CrossRefPubMedGoogle Scholar
  26. Janssens TKS (2008) The role of transcriptional regulation in micro-evolution of metal tolerance, PhD thesis, VU UniversityGoogle Scholar
  27. Janssens TKS, Marien J, Cenijn P et al (2007) Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta. BMC Evol Biol 7:88CrossRefPubMedGoogle Scholar
  28. Janssens TKS, Lopez RDR, Marien J et al (2008) Comparative population analysis of metallothionein promoter alleles suggests stress-induced microevolution in the field. Environ Sci Technol 42:3873–3878CrossRefPubMedGoogle Scholar
  29. Jordan IK, Katz LS, Denver DR, Streelman JT (2008) Natural selection governs local, but not global, evolutionary gene coexpression networks in Caenorhabditis elegans. BMC Syst Biol 2:96CrossRefPubMedGoogle Scholar
  30. Kimura KD, Tissenbaum HA, Liu YX, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946CrossRefPubMedGoogle Scholar
  31. Klass M, Hirsh D (1976) Non-aging developmental variant of Caenorhabditis elegans. Nature 260:523–525CrossRefPubMedGoogle Scholar
  32. Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257CrossRefPubMedGoogle Scholar
  33. Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL (2007) Genetic properties influencing the evolvability of gene expression. Science 317:118–121CrossRefPubMedGoogle Scholar
  34. Li Y, Lvarez OAA, Gutteling EW et al (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2:2155–2161Google Scholar
  35. Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593CrossRefPubMedGoogle Scholar
  36. Luca F, Kashyap S, Southard C et al (2009) Adaptive variation regulates the expression of the human SGK1 Gene in response to stress. PLoS Genet 5:e1000489CrossRefPubMedGoogle Scholar
  37. Marden JH (2008) Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity 100:111–120CrossRefPubMedGoogle Scholar
  38. Menzel R, Sturzenbaum SR, Barenwaldt A, Kulas J, Steinberg CEW (2005) Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. Environ Sci Technol 39:8324–8332CrossRefPubMedGoogle Scholar
  39. Menzel R, Swain SC, Hoess S et al (2009) Gene expression profiling to characterize sediment toxicity—a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 10:160CrossRefPubMedGoogle Scholar
  40. Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22:5734–5754CrossRefPubMedGoogle Scholar
  41. Newman JRS, Ghaemmaghami S, Ihmels J et al (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–846CrossRefPubMedGoogle Scholar
  42. Nota B, Timmermans M, Franken C et al (2008) Gene expression analysis of Collembola in cadmium containing soil. Environ Sci Technol 42:8152–8157CrossRefPubMedGoogle Scholar
  43. Owen J, Hedley BA, Svendsen C et al (2008) Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. Bmc Genomics 9:266CrossRefPubMedGoogle Scholar
  44. Parsons PA (1987) Evolutionary rates under environmental-stress. Evol Biol 21:311–347Google Scholar
  45. Pietsch K, Saul N, Menzel R, Stürzenbaum SR, Steinberg CEW (2009) Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10:565–578CrossRefPubMedGoogle Scholar
  46. Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254CrossRefPubMedGoogle Scholar
  47. Posthuma L, Hogervorst RF, Van Straalen NM (1992) Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola). Arch Environ Contam Toxicol 22:146–156CrossRefPubMedGoogle Scholar
  48. Posthuma L, Hogervorst RF, Joosse ENG, Van Straalen NM (1993) Genetic variation and covariation for characteristics associated with cadmium tolerance in natural populations of the springtail Orchesella cincta. Evolution 47:619–631CrossRefGoogle Scholar
  49. Ren PF, Lim CS, Johnsen R et al (1996) Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274:1389–1391CrossRefPubMedGoogle Scholar
  50. Roelofs D, Marien J, van Straalen NM (2007) Differential gene expression profiles associated with heavy metal tolerance in the soil insect Orchesella cincta. Insect Biochem Mol Biol 37:287–295CrossRefPubMedGoogle Scholar
  51. Roelofs D, Aarts MGM, Schat H, van Straalen NM (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct Ecol 22:8–18Google Scholar
  52. Roelofs D, Janssens TKS, Timmermans M et al (2009) Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Mol Ecol 18:3227–3239CrossRefPubMedGoogle Scholar
  53. Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114CrossRefGoogle Scholar
  54. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226CrossRefPubMedGoogle Scholar
  55. Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63CrossRefPubMedGoogle Scholar
  56. Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective sinauer. Sinauer Associates, SunderlandGoogle Scholar
  57. Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189–211CrossRefGoogle Scholar
  58. Sorensen JG, Loeschcke V (2002) Decreased heat-shock resistance and down-regulation of Hsp70 expression with increasing age in adult Drosophila melanogaster. Funct Ecol 16:379–384CrossRefGoogle Scholar
  59. Steinberg CEW, Sturzenbaum SR, Menzel R (2008) Genes and environment—striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 400:142–161CrossRefPubMedGoogle Scholar
  60. Sterenborg I (2003) Molecular physiology of metal tolerance in Orchesella cincta: the role of metallothionein, PhD thesis, Vrije UniversiteitGoogle Scholar
  61. Sturzenbaum SR, Andre J, Kille P, Morgan AJ (2009) Earthworm genomes, genes and proteins: the (re)discovery of Darwin’s worms. Proc R Soc B Biol Sci 276:789–797CrossRefGoogle Scholar
  62. Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959CrossRefPubMedGoogle Scholar
  63. Swan KA, Curtis DE, McKusick KB et al (2002) High-throughput gene mapping in Caenorhabditis elegans. Genome Res 12:1100–1105PubMedGoogle Scholar
  64. Tirosh I, Weinberger A, Carmi M, Barkai N (2006) A genetic signature of interspecies variations in gene expression. Nat Genet 38:830–834CrossRefPubMedGoogle Scholar
  65. Tishkoff SA, Reed FA, Ranciaro A et al (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39:31–40CrossRefPubMedGoogle Scholar
  66. Van de Mortel JE, Villanueva LA, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147CrossRefPubMedGoogle Scholar
  67. Van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, OxfordGoogle Scholar
  68. Walther D, Brunnemann R, Selbig J (2007) The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet 3:216–229CrossRefGoogle Scholar
  69. Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634CrossRefPubMedGoogle Scholar
  70. Warren AJ (2002) Eukaryotic transcription factors. Curr Opin Struct Biol 12:107–114CrossRefPubMedGoogle Scholar
  71. Watson FL, Puttmann-Holgado R, Thomas F et al (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878CrossRefPubMedGoogle Scholar
  72. Wittkopp PJ (2007) Variable gene expression in eukaryotes: a network perspective. J Exp Biol 210:1567–1575CrossRefPubMedGoogle Scholar
  73. Wray GA, Hahn MW, Abouheif E et al (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419CrossRefPubMedGoogle Scholar
  74. Yang CH, Bolotin E, Jiang T, Sladek FM, Martinez E (2007) Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389:52–65CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dick Roelofs
    • 1
  • John Morgan
    • 2
  • Stephen Stürzenbaum
    • 3
  1. 1.Institute of Ecological SciencesVU UniversityAmsterdamThe Netherlands
  2. 2.School of BiosciencesCardiff UniversityCardiffUK
  3. 3.School of Biomedical and Health Sciences, Pharmaceutical Science DivisionKing’s CollegeLondonUK

Personalised recommendations