Evolutionary Ecology

, Volume 24, Issue 1, pp 237–250

Chemotype of Senecio jacobaea affects damage by pathogens and insect herbivores in the field

Original Paper


The evolution of the diversity of plant secondary metabolites is still poorly understood. To determine whether natural enemies could exert selection on plant secondary chemistry, pathogen infestation and invertebrate herbivory were measured on 10 genotypes of Senecio jacobaea (Tansy Ragwort) at two experimental field sites during a 2-year period. The genotypes represented two chemotypes based on the presence of the pyrrolizidine alkaloids (PA) jacobine and erucifoline. At one site, Heteren, mainly generalist herbivores were present. Here, damage was limited and did not differ among genotypes or chemotypes. At the other site, Meijendel, several specialists attacked the plants. Damage increased during the year, with a peak in July when most damage was caused by the specialist moth Tyria jacobaeae. At this peak there was no difference in damage among chemotypes. In the months prior to T. jacobaeae damage, chemotypes with jacobine were more severely attacked by specialists than the chemotypes without jacobine. Total damage during that period was positively correlated with both total PA concentration and jacobine concentration. Probably plant vigor also played a role in host preference since damage per individual plant was positively correlated with plant size. Our results suggest that total PA concentration and specifically jacobine had a positive effect on specialist feeding, indicating ecological costs involved in the production of PAs. Ecological costs related to plant secondary compounds could explain why not all individuals produce high levels of these compounds. In addition, differences in specialist herbivore pressures among sites may contribute to the variation in secondary metabolites among populations.


Evolution Ecological costs Plant defense Chemical diversity Host choice Pyrrolizidine alkaloids Jacobaea vulgaris 


  1. Barazani O, Cohen Y, Fait A, Diminshtein S, Dudai N, Ravid U, Putievsky E, Friedman J (2002) Chemotypic differentation in indigenous populations of Foeniculum vulgare in Israel. Biochem Syst Ecol 30:721–731. doi:10.1016/S0305-1978(02)00019-4 CrossRefGoogle Scholar
  2. Bentley MD, Leonard DE, Stoddard WF, Zalkow LH (1984) Pyrrolizidine alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann Entomol Soc Am 77:393–397Google Scholar
  3. Berenbaum MR, Zangerl AR (1998) Chemical phenotype matching between a plant and its insect herbivore. Proc Natl Acad Sci USA 95:13743–13748. doi:10.1073/pnas.95.23.13743 CrossRefPubMedGoogle Scholar
  4. Cheeke PR (1988) Toxicity and metabolism of pyrrolizidine alkaloids. J Anim Sci 66:2343–2350PubMedGoogle Scholar
  5. De Boer NJ (1999) Pyrrolizidine alkaloid distribution in Senecio jacobaea minimises loss to generalist herbivores. Entomol Exp Appl 91:169–173. doi:10.1023/A:1003651801315 CrossRefGoogle Scholar
  6. Dreyer DL, Jones KC, Molyneux RJ (1985) Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of indolizidine alkaloid swaisonine. J Chem Ecol 11:1045–1051. doi:10.1007/BF01020674 CrossRefGoogle Scholar
  7. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evol Int J Org Evol 18:586–608. doi:10.2307/2406212 Google Scholar
  8. Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of oilseed rape (Brassica napus sp. olerifera) on its interactin with specialist and generalist pests. Ann Appl Biol 126:347–363. doi:10.1111/j.1744-7348.1995.tb05371.x CrossRefGoogle Scholar
  9. Gols R, Wagenaar R, Bukovinszky T, Van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Genetic variation in defence chemistry in wild cabbages affects herbivores and their endoparasitoids. Ecology 89:1616–1626. doi:10.1890/07-0873.1 CrossRefPubMedGoogle Scholar
  10. Hägele BF, Rowell-Rahier M (2000) Choice, performance and heritability of performance of specialist and generalist insect herbivores towards cacalol and seneciphylline, two allelochemicals of Adenostyles alpina (Asteraceae). J Evol Biol 13:131–142. doi:10.1046/j.1420-9101.2000.00145.x CrossRefGoogle Scholar
  11. Harborne JB (1982) Introduction to ecological biochemistry. Academic Press, LondonGoogle Scholar
  12. Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 9. Pergamon Press Elmsford, New York, pp 156–233Google Scholar
  13. Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J Plant Physiol 122:67–80Google Scholar
  14. Hol WHG, Van Veen JA (2002) Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. J Chem Ecol 28:1751–1760. doi:10.1023/A:1020557000707 CrossRefGoogle Scholar
  15. Hol WHG, Vrieling K, Van Veen JA (2003) Nutrients decrease pyrrolizidine alkaloid concentration in Senecio jacobaea. New Phytol 158:175–181. doi:10.1046/j.1469-8137.2003.00710.x CrossRefGoogle Scholar
  16. Hol WHG, Macel M, van Veen JA, Van der Meijden E (2004) Root damage and above ground herbivory change concentration and composition of pyrrolizidine alkaloids in Senecio jacobaea. Basic Appl Ecol 5:253–260. doi:10.1016/j.baae.2003.12.002 CrossRefGoogle Scholar
  17. Joosten L, Mulder PPJ, Klinkhamer PGL, Van Veen JA (2009) Soil-borne organisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris. Plant and Soil. doi:10.1007/s11104-009-9963-7 Google Scholar
  18. Joshi J, Vrieling K (2005) The enemy release and EICA hypotheses revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714. doi:10.1111/j.1461-0248.2005.00769.x CrossRefGoogle Scholar
  19. Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184. doi:10.1111/j.1469-8137.2007.02090.x CrossRefPubMedGoogle Scholar
  20. Lindigkeit R, Biller A, Buch M, Schiebel H, Boppré M, Hartmann T (1997) The two faces of pyrrolizidine alkaloids: the role of tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur J Biochem 245:626–636. doi:10.1111/j.1432-1033.1997.00626.x CrossRefPubMedGoogle Scholar
  21. Linhart YB, Thompson JD (1999) Thyme is of essence: biochemical polymorphisms and multi-species deterrence. Evol Ecol Res 1:151–171Google Scholar
  22. Linhart YB, Keefover-Ring K, Mooney KA, Breland BD, Thompson JD (2005) Chemical polymorphism in a multitrophic setting: thyme monoterpene composition and food web structure. Am Nat 166:517–529. doi:10.1086/444438 CrossRefPubMedGoogle Scholar
  23. Macel M, Vrieling K (2003) Pyrrolizidine alkaloids as oviposition stimulants for the cinnabar moth, Tyria jacobaeaea. J Chem Ecol 29:1435–1446. doi:10.1023/A:1024269621284 CrossRefPubMedGoogle Scholar
  24. Macel M, Klinkhamer PGL, Vrieling K, Van der Meijden E (2002) Diversity of pyrrolizdine alkaloids in Senecio species does not affect the specialist herbivore Tyria jacobaeae. Oecologia 133:514–550. doi:10.1007/s00442-002-1074-6 CrossRefGoogle Scholar
  25. Macel M, Klinkhamer PGL, Vrieling K (2004) Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry 65:865–873. doi:10.1016/j.phytochem.2004.02.009 CrossRefPubMedGoogle Scholar
  26. Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508. doi:10.1007/s10886-005-5793-0 CrossRefPubMedGoogle Scholar
  27. Mattocks AR (1968) Toxicity of pyrrolizidine alkaloids. Nature 217:723–728. doi:10.1038/217723a0 CrossRefPubMedGoogle Scholar
  28. Mithen R, Raybould AF, Giamoustaris A (1995) Divergent selection for secondary metabolites between wild populations of Brassica oleracea and its implications for plant-herbivore interactions. Heredity 75:472–484. doi:10.1038/hdy.1995.164 CrossRefGoogle Scholar
  29. Moyes CL, Raybould AF (2001) The role of spatial scale and intraspecific variation in secondary chemistry in host-plant location by Ceutorhynchus assimilis (Coleoptera: Curculionidae). Proc R Soc Lond B Biol Sci 268:1567–1573. doi:10.1098/rspb.2001.1685 CrossRefGoogle Scholar
  30. Moyes CL, Collin HA, Britton G, Raybould AF (2000) Glucosinolates and differential herbivory in wild populations of Brassica oleracea. J Chem Ecol 26:2625–2641. doi:10.1023/A:1005549115751 CrossRefGoogle Scholar
  31. Naumann C, Hartmann T, Ober D (2002) Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc Natl Acad Sci USA 99:6085–6090. doi:10.1073/pnas.082674499 CrossRefPubMedGoogle Scholar
  32. Poelman EH, Van Loon JJA, Dicke M (2008) Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci 13:534–541. doi:10.1016/j.tplants.2008.08.003 CrossRefPubMedGoogle Scholar
  33. Rhoades DG, Lincoln DE, Langenheim JH (1976) Preliminary studies of monoterpenoid variability in Satureja douglasii. Biochem Syst Ecol 4:5–12. doi:10.1016/0305-1978(76)90003-X CrossRefGoogle Scholar
  34. Shonle I, Bergelson J (2000) Evolutionary ecology of the tropane alkaloids of Datura Stramonium L. (Solanaceae). Evol Int J Org Evol 54:778–788Google Scholar
  35. Sokal R, Rohlf JF (1995) Biometry. WH Freeman and company, NYGoogle Scholar
  36. Steinger T, Müller-Schärer H (1992) Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil-nitrogen availibility. Oecologia 91:141–149Google Scholar
  37. Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285. doi:10.1016/S0169-5347(02)02483-7 CrossRefGoogle Scholar
  38. Tomko J, Voticky Z (1973) Steroid alkaloids: the Veratrum and Buxus groups. In: Manke RHF (ed) The Alkaloids, vol 14. Academic Press, New York., pp 1–82Google Scholar
  39. Van Dam NM, Vuister LWN, Bergshoeff C, de Vos H, van der Meijden E (1995) The ‘raison d’être’ of pyrrolizidine alkaloids in Cynoglossum officinale: deterrent effects against generalist herbivores. J Chem Ecol 21:507–523. doi:10.1007/BF02033698 CrossRefGoogle Scholar
  40. Van der Meijden E (1996) Plant defence, an evolutionary dilemma; contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol Exp Appl 80:307–310. doi:10.1007/BF00194780 CrossRefGoogle Scholar
  41. Van der Meijden E, Van Wijk C (1997) Tritrophic Metapopulation Dynamics. A case study of ragwort, the cinnabar moth and the parasitoid Cotesia popularis. In: Hanksi IA, Gilpin ME (eds) Metapopulation Biology. Ecology, Genetics and Evolution. Academic Press, San Diego., pp 387–405Google Scholar
  42. Van Leur H, Vet LEM, Van der Putten WH, Van Dam NM (2008) Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J Chem Ecol 34:121–131. doi:10.1007/s10886-007-9424-9 CrossRefPubMedGoogle Scholar
  43. Vrieling K, De Boer NJ (1999) Host plant choice and larval growth in the cinnabar moth: do pyrrolizidine alkaloids play a role? Entomol Exp Appl 91:251–257. doi:10.1023/A:1003659710653 CrossRefGoogle Scholar
  44. Vrieling K, van Wijk CAM (1994) Estimating costs and benefits of the pyrrolizidine alkaloids of Senecio jacobaea under natural conditions. Oikos 70:449–454. doi:10.2307/3545785 CrossRefGoogle Scholar
  45. Vrieling K, Soldaat LL, Smit W (1991) The influence of pyrrolizidine alkaloids of Senecio jacobaea on Tyria jacobaeae, Brachycaudus cardii and Haplothrips senecionis. Neth J Zool 41:228–239. doi:10.1163/156854291X00162 CrossRefGoogle Scholar
  46. Vrieling K, de Vos H, van Wijk CAM (1993) Genetic analysis of the concentration of pyrrolizidine alkaloids of Senecio jacobaea. Phytochemistry 32:1141–1144. doi:10.1016/S0031-9422(00)95079-9 CrossRefGoogle Scholar
  47. Witte L, Ernst L, Adam H, Hartmann T (1992) Chemotypes of two pyrrolizidine alkaloid-containing Senecio species. Phytochemistry 31:559–565. doi:10.1016/0031-9422(92)90038-R CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Netherlands Institute of Ecology (NIOO-KNAW)HeterenThe Netherlands

Personalised recommendations