Evolutionary Ecology

, Volume 24, Issue 1, pp 227–236 | Cite as

Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off

  • Jay M. Fitzsimmons
  • Sijmen E. Schoustra
  • Jeremy T. Kerr
  • Rees Kassen
Original Paper

Abstract

What are the effects of a mutational event on population dynamics? This eco-evolutionary question has relevance not only to basic biological theories but also to conservation applications. We evaluated the relationship between maximum population growth rate (rmax) and carrying capacity (K) among strains of the bacterium Pseudomonas fluorescens. Each of 65 strains differed from their common ancestor by one naturally acquired phenotypic change conferring antibiotic resistance, brought about by a single mutational event, and each was grown in isolation in four environments. We found no evidence of a trade-off between rmax and K. Rather, strains with rapid growth rates also had high carrying capacity, with little interaction between strain and environment. We conclude that the extensive variation in overall fitness resulting from single mutational events likely masks whatever population trade-offs may exist.

Keywords

Pseudomonas fluorescens Genotype × environment interactions Fitness Antibiotic resistance Population dynamics Contemporary evolution Y-model Fitness components model 

References

  1. Adam M, Murali B, Glenn NO, Potter SS (2008) Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol Biol 8:52. doi:10.1186/1471-2148-8-52 CrossRefPubMedGoogle Scholar
  2. Bell G (2008) Selection: the mechanism of evolution, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  3. Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393. doi:10.1111/j.1365-2435.2007.01289.x CrossRefGoogle Scholar
  4. de Jong G, van Noordwijk AJ (1992) Acquisition and allocation of resources: genetic (co)variances, selection, and life histories. Am Nat 139:749–770. doi:10.1086/285356 CrossRefGoogle Scholar
  5. Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610–618. doi:10.1038/nrg2146 CrossRefPubMedGoogle Scholar
  6. Gutteling EW, Doroszuk A, Riksen JAG, Prokop Z, Reszka J, Kammenga JE (2007) Environmental influence on the genetic correlations between life-history traits in Caenorhabditis elegans. Heredity 98:206–213. doi:10.1038/sj.hdy.6800929 CrossRefPubMedGoogle Scholar
  7. Hawkey PM (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51:29–35. doi:10.1093/jac/dkg207 CrossRefPubMedGoogle Scholar
  8. Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29. doi:10.1111/j.1365-294X.2007.03428.x CrossRefPubMedGoogle Scholar
  9. Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nat Rev Genet 9:421–432. doi:10.1038/nrg2339 CrossRefPubMedGoogle Scholar
  10. Jacoby GA (2005) Mechanisms of resistance to quinolones. Clin Infect Dis 41:S120–S126. doi:10.1086/428052 CrossRefPubMedGoogle Scholar
  11. Jasmin J-N, Kassen R (2007) On the experimental evolution of specialization and diversity in heterogeneous environments. Ecol Lett 10:272–281. doi:10.1111/j.1461-0248.2007.01021.x CrossRefPubMedGoogle Scholar
  12. Johnson T, Barton N (2005) Theoretical models of selection and mutation on quantitative traits. Philos Trans R Soc Lond B Bio 360:1411–1425. doi:10.1098/rstb.2005.1667 CrossRefGoogle Scholar
  13. Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 22:250–257. doi:10.1016/j.tree.2007.01.014 CrossRefPubMedGoogle Scholar
  14. Kassen R, Bataillon T (2006) Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nat Genet 38:484–488. doi:10.1038/ng1751 CrossRefPubMedGoogle Scholar
  15. Lau JA (2008) Beyond the ecological: biological invasions alter natural selection on a native plant species. Ecology 89:1023–1031. doi:10.1890/06-1999.1 CrossRefPubMedGoogle Scholar
  16. Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511PubMedGoogle Scholar
  17. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  18. Mace GM, Purvis A (2008) Evolutionary biology and practical conservation: bridging a widening gap. Mol Ecol 17:9–19. doi:10.1111/j.1365-294X.2007.03455.x CrossRefPubMedGoogle Scholar
  19. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, WashingtonGoogle Scholar
  20. Mueller LD (1997) Theoretical and empirical examination of density-dependent selection. Annu Rev Ecol Syst 28:269–288. doi:10.1146/annurev.ecolsys.28.1.269 CrossRefGoogle Scholar
  21. Mueller LD, Ayala FJ (1981) Trade-off between r-selection and K-selection in Drosophila populations. Proc Natl Acad Sci USA 78:1303–1305. doi:10.1073/pnas.78.2.1303 CrossRefPubMedGoogle Scholar
  22. Novak M, Pfeiffer T, Lenski RE, Sauer U, Bonhoeffer S (2006) Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am Nat 168:242–251. doi:10.1086/506527 CrossRefPubMedGoogle Scholar
  23. Ostrowski EA, Rozen DE, Lenski RE (2005) Pleiotropic effects of beneficial mutations in Escherichia coli. Evol Int J Org Evol 59:2343–2352Google Scholar
  24. Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597. doi:10.1086/282697 CrossRefGoogle Scholar
  25. Rainey PB, Bailey MJ (1996) Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19:521–533. doi:10.1046/j.1365-2958.1996.391926.x CrossRefPubMedGoogle Scholar
  26. Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15:421–425. doi:10.1016/S0169-5347(00)01941-8 CrossRefPubMedGoogle Scholar
  27. Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520Google Scholar
  28. Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447. doi:10.1111/j.1420-9101.2006.01255.x CrossRefPubMedGoogle Scholar
  29. Rueffler C, Egas M, Metz JAJ (2006) Evolutionary predictions should be based on individual-level traits. Am Nat 168:E148–E162. doi:10.1086/508618 CrossRefPubMedGoogle Scholar
  30. Sgrò CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248. doi:10.1038/sj.hdy.6800532 CrossRefPubMedGoogle Scholar
  31. Stearns SC (1977) The evolution of life history traits: a critique of the theory and a review of the data. Annu Rev Ecol Syst 8:145–171. doi:10.1146/annurev.es.08.110177.001045 CrossRefGoogle Scholar
  32. van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142. doi:10.1086/284547 CrossRefGoogle Scholar
  33. Worley AC, Houle D, Barrett SCH (2003) Consequences of hierarchical allocation for the evolution of life-history traits. Am Nat 161:153–167. doi:10.1086/345461 CrossRefPubMedGoogle Scholar
  34. Zera A, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126. doi:10.1146/annurev.ecolsys.32.081501.114006 CrossRefGoogle Scholar
  35. Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jay M. Fitzsimmons
    • 1
  • Sijmen E. Schoustra
    • 2
  • Jeremy T. Kerr
    • 1
  • Rees Kassen
    • 2
  1. 1.Department of BiologyUniversity of OttawaOttawaCanada
  2. 2.Department of Biology and Centre for Advanced Research in Environmental GenomicsUniversity of OttawaOttawaCanada

Personalised recommendations