Evolutionary Ecology

, Volume 24, Issue 1, pp 115–131 | Cite as

Are high-latitude individuals superior competitors? A test with Rana temporaria tadpoles

Original Paper

Abstract

Species with a wide distribution over latitudinal gradients often exhibit increasing growth and development rates towards higher latitudes. Ecological theory predicts that these fast-growing genotypes are, in the absence of trade-offs with fast growth, better competitors than low-latitude conspecifics. While knowledge on key ecological traits along latitudinal clines is important for understanding how these clines are maintained, the relative competitive ability of high latitude individuals against low latitude conspecifics has not been tested. Growth and development rates of the common frog Rana temporaria increase along the latitudinal gradient across Scandinavia. Here we investigated larval competition over food resources within and between two R. temporaria populations originating from southern and northern Sweden in an outdoor common garden experiment. We used a factorial design, where southern and northern tadpoles were reared either as single populations or as mixes of the two populations at two densities and predator treatments (absence and non-lethal presence of Aeshna dragonfly larvae). Tadpoles from the high latitude population grew and developed faster and in the beginning of the experiment they hid less and were more active than tadpoles from the low latitude population. When raised together with high latitude tadpoles the southern tadpoles had a longer larval period, however, the response of high latitude tadpoles to the competition by low latitude tadpoles did not differ from their response to intra-population competition. This result was not significantly affected by density or predator treatments. Our results support the hypothesis that high latitude populations are better competitors than their low latitude conspecifics, and suggest that in R. temporaria fast growth and development trade off with other fitness components along the latitudinal gradient across Scandinavia.

Keywords

Activity Growth Intraspecfic competition Latitudinal clines Rana temporaria 

Notes

Acknowledgments

We thank Sofia Wennberg for help with the experiment, Gunilla Engström and Kerstin Santesson for help in the molecular laboratory, and Jon Loman, Gerard Malsher, German Orizaola and Katja Räsänen for valuable comments on earlier versions of the manuscript. This study was performed with the permission of the Ethical Committee for Animal Experiments in Uppsala County and funded by the Swedish Research Council (grant to AL) and Zoologiska Stiftelsen (BL).

References

  1. Altwegg R (2002) Predator-induced life-history plasticity under time constraints in pool frogs. Ecology 83:2542–2551Google Scholar
  2. Altwegg R, Reyer H-U (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evol Int J Org Evol 57:872–882Google Scholar
  3. Angilletta MJ Jr, Wilson RS, Navas CA, James RS (2003) Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol 18:234–240. doi: 10.1016/S0169-5347(03)00087-9 CrossRefGoogle Scholar
  4. APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, WashingtonGoogle Scholar
  5. Arendt JD (1997) Adaptive intrinsic growth rates: an integration across taxa. Q Rev Biol 72:149–177. doi: 10.1086/419764 CrossRefGoogle Scholar
  6. Arnett AE, Gotelli NJ (1999) Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule. Evol Int J Org Evol 53:1180–1188. doi: 10.2307/2640821 Google Scholar
  7. Ashton KG (2004) Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integr Comp Biol 44:403–412. doi: 10.1093/icb/44.6.403 CrossRefGoogle Scholar
  8. Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71:1599–1608. doi: 10.2307/1938295 CrossRefGoogle Scholar
  9. Berven KA, Gill DE (1983) Interpreting geographic variation in life-history traits. Am Zool 23:85–97Google Scholar
  10. Biek R, Funk CW, Maxell BA, Mills LS (2002) What is missing in amphibian decline research: insights from ecological sensitivity analysis. Conserv Biol 16:728–734. doi: 10.1046/j.1523-1739.2002.00433.x CrossRefGoogle Scholar
  11. Biro PA, Abrahams MV, Post JR, Parkinson EA (2004) Predators select against high growth rates and risk-taking behaviour in domestic trout populations. Proc R Soc Lond B Biol Sci 271:2233–2237. doi: 10.1098/rspb.2004.2861 CrossRefGoogle Scholar
  12. Biro PA, Abrahams MV, Post JR, Parkinson EA (2006) Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J Anim Ecol 75:1161–1171. doi: 10.1111/j.1365-2656.2006.01137.x CrossRefGoogle Scholar
  13. Blanckenhorn WU, Dermot M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424. doi: 10.1093/icb/44.6.413 CrossRefGoogle Scholar
  14. Brodin T, Johansson F (2004) Conflicting selection pressures on the growth/predation risk trade-off in a damselfly. Ecology 85:2927–2932. doi: 10.1890/03-3120 CrossRefGoogle Scholar
  15. Connell JH (1983) On the prevalence and relative importance of inter-specific competition: evidence from field experiments. Am Nat 122:661–696. doi: 10.1086/284165 CrossRefGoogle Scholar
  16. Conover DO, Present TMC (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324Google Scholar
  17. Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10:248–252. doi: 10.1016/S0169-5347(00)89081-3 CrossRefGoogle Scholar
  18. Conover DO, Brown JJ, Ehtisham A (1997) Countergradient variation in growth of young striped bass (Morone saxatilis) from different latitudes. Can J Fish Aquat Sci 54:2401–2409. doi: 10.1139/cjfas-54-10-2401 CrossRefGoogle Scholar
  19. Devlin RH, Johnsson JI, Smailus DE, Biagi CA, Jonsson E, Björnsson BT (1999) Increased ability to compete for food by growth hormone-transgenic coho salmon Oncorhynchus kisutsch (Walbaum). Aquacult Res 30:479–482. doi: 10.1046/j.1365-2109.1999.00359.x CrossRefGoogle Scholar
  20. Gasc JP, Cabela A, Crnobrnja-Isailovic J, Dolmen D, Grossenbacher K, Haffner P, Lescure J, Martens H, Martinéz Rica JP, Oliveira ME, Sofianidou TS, Veith M, Zuiderwijk A (1997) Atlas of amphibians and reptiles in Europe. Societas Europaea Herpetologica and Muséum National d’Histoire Naturelle (IEGB/SPN), ParisGoogle Scholar
  21. Gilchrist GW, Huey RB, Serra L (2001) Rapid evolution of wing size clines in Drosophila subobscura. Genetica 112–113:273–286. doi: 10.1023/A:1013358931816 CrossRefPubMedGoogle Scholar
  22. Gosner KN (1960) A simplified table for staging anuran embryos and larvae with notes of identification. Herpetologica 16:183–190Google Scholar
  23. Grill CP, Juliano SA (1996) Predicting species interactions based on behaviour: predation and competition in container dwelling mosquitoes. J Anim Ecol 65:63–76. doi: 10.2307/5700 CrossRefGoogle Scholar
  24. Hellriegel B (2000) Single-or multistage regulation in complex life cycles: does it make a difference? Oikos 88:239–249. doi: 10.1034/j.1600-0706.2000.880202.x CrossRefGoogle Scholar
  25. Imsland AK, Foss A, Nævdal G, Cross T, Bonga SW, Ham EV, Stefansson SO (2000) Countergradient variation in growth and food conversion efficiency of juvenile turbot. J Fish Biol 57:1213–1226. doi: 10.1111/j.1095-8649.2000.tb00482.x CrossRefGoogle Scholar
  26. James AC, Partridge L (1998) Geographic variation in competitive ability in Drosophila melanogaster. Am Nat 151:530–537. doi: 10.1086/286138 CrossRefPubMedGoogle Scholar
  27. Johansson F, Stoks R, Rowe L, De Block M (2001) Life history plasticity in a damselfly: effects of combined time and biotic constraints. Ecology 82:1857–1869Google Scholar
  28. Johansson M, Primmer CR, Merilä J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983. doi: 10.1111/j.1365-294X.2006.02866.x CrossRefPubMedGoogle Scholar
  29. Lankford TE Jr, Billerbeck JM, Conover DO (2001) Evolution of intrinsic growth and energy acquisition rates. II. Trade-offs in vulnerability to predation in Menidia menidia. Evol Int J Org Evol 55:1873–1881. doi: 10.1111/j.0014-3820.2001.tb00836.x Google Scholar
  30. Laugen AT, Laurila A, Merilä J (2002) Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits. Biol J Linn Soc Lond 76:61–70. doi: 10.1111/j.1095-8312.2002.tb01714.x CrossRefGoogle Scholar
  31. Laugen AT, Laurila A, Räsänen K, Merilä J (2003) Latitudinal countergradient variation in the common frog (Rana temporaria) development rates—evidence for local adaptation. J Evol Biol 16:996–1005. doi: 10.1046/j.1420-9101.2003.00560.x CrossRefPubMedGoogle Scholar
  32. Laugen AT, Kruuk LEB, Laurila A, Räsänen K, Stone J, Merilä J (2005) Quantitative genetics of larval life-history traits in Rana temporaria in different environmental conditions. Genet Res 86:161–170. doi: 10.1017/S0016672305007810 CrossRefPubMedGoogle Scholar
  33. Laurila A, Pakkasmaa S, Merilä J (2001) Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos 95:451–460. doi: 10.1034/j.1600-0706.2001.950310.x CrossRefGoogle Scholar
  34. Laurila A, Järvi-Laturi M, Pakkasmaa S, Merilä J (2004) Temporal variation in predation risk: stage-dependency, graded responses and fitness costs in tadpole antipredator defences. Oikos 107:90–99. doi: 10.1111/j.0030-1299.2004.13126.x CrossRefGoogle Scholar
  35. Laurila A, Pakkasmaa S, Merilä J (2006) Population divergence in growth rate and antipredator defenses in Rana arvalis. Oecologia 147:585–595. doi: 10.1007/s00442-005-0301-3 CrossRefPubMedGoogle Scholar
  36. Laurila A, Lindgren B, Laugen AT (2008) Antipredator defenses along a latitudinal gradient in Rana temporaria. Ecology 89:1399–1413. doi: 10.1890/07-1521.1 CrossRefPubMedGoogle Scholar
  37. Lindgren B, Laurila A (2005) Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria. J Evol Biol 18:820–828. doi: 10.1111/j.1420-9101.2004.00875.x CrossRefPubMedGoogle Scholar
  38. Loman J (2004) Density regulation in tadpoles of Rana temporaria: a full pond field experiment. Ecology 85:1611–1618. doi: 10.1890/03-0179 CrossRefGoogle Scholar
  39. Mangel M, Stamps J (2001) Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evol Ecol Res 3:583–593Google Scholar
  40. Merilä J, Laurila A, Laugen AT, Räsänen K, Pahkala M (2000) Plasticity in age and size at metamorphosis in Rana temporaria—comparison of high and low latitude populations. Ecography 23:457–465. doi: 10.1034/j.1600-0587.2000.230408.x CrossRefGoogle Scholar
  41. Merilä J, Laurila A, Lindgren B (2004) Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations. J Evol Biol 17:1132–1140CrossRefPubMedGoogle Scholar
  42. Mousseau TA, Fox WF (1998) Maternal effects as adaptations. Oxford University Press, New YorkGoogle Scholar
  43. Munch SB, Mangel M, Conover DO (2003) Quantifying natural selection in body size from field data: winter mortality in Menidia menidia. Ecology 84:2168–2177. doi: 10.1890/02-0137 CrossRefGoogle Scholar
  44. Odin H, Eriksson B, Perttu K (1983) Temperature climate maps for Swedish forestry. Department of Forest Soils, Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  45. Orizaola G, Laurila A (2009) Microgeographic variation in temperature-induced plasticity in an isolated amphibian metapopulation. Evol Ecol (in press). doi: 10.1007/s10682-008-9285-x
  46. Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmer CR, Merilä J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12:1963–1968. doi: 10.1046/j.1365-294X.2003.01865.x CrossRefPubMedGoogle Scholar
  47. Persson L (1985) Asymmetrical competition: are larger animals competitively superior? Am Nat 126:261–266. doi: 10.1086/284413 CrossRefGoogle Scholar
  48. Pidancier N, Gauthier P, Miquel C, Pompanon F (2001) Polymorphic microsatellite DNA loci identified in the common frog (Rana temporaria, Amphibia, Ranidae). Mol Ecol Notes 2:304–305. doi: 10.1046/j.1471-8286.2002.00244.x CrossRefGoogle Scholar
  49. Räsänen K, Laurila A, Merilä J (2003) Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. Evol Int J Org Evol 57:352–362. doi: 10.1554/0014-3820(2003)057[0352:GVIAST]2.0.CO;2 Google Scholar
  50. Relyea RA (2002) Local population differences in phenotypic plasticity: predator-induced changes in wood frog tadpoles. Ecol Monogr 72:77–93CrossRefGoogle Scholar
  51. Relyea RA (2007) Getting out alive: how predators affect the decision to metamorphose. Oecologia 152:389–400. doi: 10.1007/s00442-007-0675-5 CrossRefPubMedGoogle Scholar
  52. Roff DA (1980) Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia 45:202–208. doi: 10.1007/BF00346461 CrossRefGoogle Scholar
  53. Schoener TW (1983) Field experiments on inter-specific competition. Am Nat 122:240–285. doi: 10.1086/284133 CrossRefGoogle Scholar
  54. Sears MW (2005) Geographic variation in the life history of the sagebrush lizard: the role of thermal constraints on activity. Oecologia 143:25–36. doi: 10.1007/s00442-004-1767-0 CrossRefPubMedGoogle Scholar
  55. Skelly DK, Kiesecker JM (2001) Venue and outcome in ecological experiments: manipulations of larval anurans. Oikos 94:198–208. doi: 10.1034/j.1600-0706.2001.t01-1-11105.x CrossRefGoogle Scholar
  56. Smith DC (1983) Factors controlling tadpole populations of the chorus frog (Pseudacris triseriata) on Isle Royale, Michigan. Ecology 64:501–510. doi: 10.2307/1939970 CrossRefGoogle Scholar
  57. Smith DC (1987) Adult recruitment in chorus frogs: effects of size and date and metamorphosis. Ecology 68:344–350. doi: 10.2307/1939265 CrossRefGoogle Scholar
  58. Uller T, Astheimer L, Olsson M (2007) Consequences of maternal yolk testosterone for offspring development and survival: experimental test in a lizard. Funct Ecol 21:544–551. doi: 10.1111/j.1365-2435.2007.01264.x CrossRefGoogle Scholar
  59. Van Buskirk J, Arioli M (2005) Habitat specialization and adaptive divergence of anuran populations. J Evol Biol 18:596–608. doi: 10.1111/j.1420-9101.2004.00869.x CrossRefPubMedGoogle Scholar
  60. Vonesh JR, De la Cruz O (2002) Complex life cycles and density dependence: assessing the contribution of egg mortality to amphibian declines. Oecologia 133:325–333. doi: 10.1007/s00442-002-1039-9 CrossRefGoogle Scholar
  61. Werner EE (1992) Competitive interactions between wood frog and northern leopard frog larvae: the influence of size and activity. Copeia 1992:26–35. doi: 10.2307/1446532 CrossRefGoogle Scholar
  62. Werner EE (1994) Ontogenetic scaling of competitive relations: size-dependent effects and responses in two anuran larvae. Ecology 75:197–213. doi: 10.2307/1939394 CrossRefGoogle Scholar
  63. Werner EE, Gilliam JF (1984) The ontogenetic niche shift and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425. doi: 10.1146/annurev.es.15.110184.002141 CrossRefGoogle Scholar
  64. Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93. doi: 10.1146/annurev.es.11.110180.000435 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Population and Conservation Biology/Department of Ecology and Evolution, Evolutionary Biology CenterUppsala UniversityUppsalaSweden

Personalised recommendations