Evolutionary Ecology

, 23:963 | Cite as

Genetic adaptation to soil acidification: experimental evidence from four grass species

  • Pernilla Göransson
  • Stefan Andersson
  • Ursula Falkengren-Grerup
Original Paper


Anthropogenic acidification has reduced soil pH and released potentially toxic aluminium (Al) ions in many regions. This investigation examines whether increased acidity has caused genetic adaptation to acidic conditions within the grass species Elymus caninus, Poa nemoralis, Deschampsia cespitosa and D. flexuosa. We sampled tussocks (genets) of each species in two regions of southern Sweden, differing in their exposure to acidifying deposition. The tolerance of the genets was tested in a solution experiment with different pH and Al concentrations. Our data suggest that species found at lower pH field locations have a greater tolerance to low pH and high Al levels than species found on less acidic soils. Analysis of variance showed a significant average effect of population and (or) genet in most species; however, we found little evidence of genetic adaptation to acidic conditions at the regional, population and micro-site level. In fact, there was no consistent change in the ranking of populations or genets with varying pH or Al concentration. Based on these results, we hypothesize that phenotypic plasticity rather than genetic adaptation has been favoured as the predominant mechanism to cope with soil acidity in the four grass species.


Aluminium pH Tolerance Stress Local adaptation Genetic variation 



We would like to thank Bengt Jacobsson for technical assistance in the greenhouse, Henrik Nilsson for help with laboratory work, and Mark van Kleunen and three anonymous reviewers for valuable comments on the manuscript. This research was supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS).


  1. Al-Hiyaly SAK, McNeilly T, Bradshaw AD (1990) The effect of zinc contamination from electricity pylons. Contrasting patterns of evolution in five grass species. New Phytol 114:183–190. doi:10.1111/j.1469-8137.1990.tb00389.x CrossRefGoogle Scholar
  2. Antonovics J, Bradshaw AD (1970) Evolution in closely adjacent plant populations VIII Clinal patterns at a mine boundary. Heredity 25:349–362. doi:10.1038/hdy.1970.36 CrossRefGoogle Scholar
  3. Bradshaw AD (1991) Genostasis and the limits to evolution. Philos Trans R Soc Lond, B 333:289–305. doi:10.1098/rstb.1991.0079 CrossRefGoogle Scholar
  4. Brunet J (1993) Environmental and historical factors limiting the distribution of rare forest grasses in South Sweden. For Ecol Manage 61:263–275CrossRefGoogle Scholar
  5. Coulaud J, McNeilly T (1992) Zinc tolerance in populations of Deschampsia cespitosa (Gramineae) beneath electricity pylons. Plant Syst Evol 179:175–185. doi:10.1007/BF00937595 CrossRefGoogle Scholar
  6. Cox RM, Hutchinson TC (1980) Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol 84:631–647. doi:10.1111/j.1469-8137.1980.tb04777.x CrossRefGoogle Scholar
  7. Davies MS, Snaydon RW (1973) Physiological differences among populations of Anthoxanthum odoratum L collected from the Park Grass Experiment, Rothamsted. J Appl Ecol 10:47–55. doi:10.2307/2404714 CrossRefGoogle Scholar
  8. Dechamps C, Noret N, Mozek R, Escarré J, Lefèbvre C, Gruber W, Meerts P (2008) Cost of adaptation to a metalliferous environment for Thlaspi caerulescens: a field reciprocal transplantation approach. New Phytol 177:167–177PubMedGoogle Scholar
  9. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321PubMedGoogle Scholar
  10. Diekmann M, Falkengren-Grerup U (1998) A new species index for forest vascular plants: development of functional indices based on mineralization rates of various forms of soil nitrogen. J Ecol 86:269–283. doi:10.1046/j.1365-2745.1998.00250.x CrossRefGoogle Scholar
  11. Eränen JK (2008) Rapid evolution towards heavy metal resistance by mountain birch around two subarctic copper-nickel smelters. J Evol Biol 21:492–501. doi:10.1111/j.1420-9101.2007.01491.x CrossRefPubMedGoogle Scholar
  12. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, HarlowGoogle Scholar
  13. Falkengren-Grerup U (1986) Soil acidification and vegetation changes in deciduous forest in southern Sweden. Oecologia 70:339–347. doi:10.1007/BF00379494 CrossRefGoogle Scholar
  14. Falkengren-Grerup U (1990) Distribution of field layer species in Swedish deciduous forests in 1929–54 and 1979–88 as related to soil pH. Vegetatio 86:143–150. doi:10.1007/BF00031730 CrossRefGoogle Scholar
  15. Falkengren-Grerup U (1995) Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia 102:305–311. doi:10.1007/BF00329797 CrossRefGoogle Scholar
  16. Falkengren-Grerup U, Tyler G (1993a) Experimental evidence for the relative sensitivity of deciduous forest plants to high soil acidity. For Ecol Manage 60:311–326CrossRefGoogle Scholar
  17. Falkengren-Grerup U, Tyler G (1993b) Soil chemical properties excluding field-layer species from beech forest mor. Plant Soil 148:185–191 errata in 15CrossRefGoogle Scholar
  18. Falkengren-Grerup U, Linnermark N, Tyler G (1987) Changes in acidity and cation pools of South Swedish soils between 1949 and 1985. Chemosphere 16:2239–2248. doi:10.1016/0045-6535(87)90282-7 CrossRefGoogle Scholar
  19. Frenckell-Insam von BAK, Hutchinson TC (1993) Occurrence of heavy metal tolerance and co-tolerance in Deschampsia cespitosa (L.) Beauv. from European and Canadian populations. New Phytol 125:555–564. doi:10.1111/j.1469-8137.1993.tb03903.x CrossRefGoogle Scholar
  20. Gananca JTF, Abreu I, Sousa NF, Pazi RF, Caldeira P, dos Santosi TMM, Costa G, Slaski JJ, de Carvalho MAAP (2007) Soil conditions and evolution of aluminium resistance among cultivated and wild plant species on the Island of Madeira. Plant Soil Environ 53:239–246Google Scholar
  21. Göransson P (2007) Genetic adaptation to soil acidification in four grasses. Ph.D. Dissertation, Department of Ecology, Lund University, SwedenGoogle Scholar
  22. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, LondonGoogle Scholar
  23. Harper FA, Smith SE, Macnair MR (1997) Where is the cost in copper tolerance in Mimulus guttatus? Testing the trade-off hypothesis. Funct Ecol 11:764–774. doi:10.1046/j.1365-2435.1997.00155.x CrossRefGoogle Scholar
  24. Herman F, Smidt S, Huber S, Englisch M, Knoflacher M (2001) Evaluation of pollution-related stress factors for forest ecosystems in central Europe. Environ Sci Pollut Res 8:231–242CrossRefGoogle Scholar
  25. Hickey DA, McNeilly T (1975) Competition between metal tolerant and normal plant populations; a field experiment on normal soil. Evol Int J Org Evol 29:458–464. doi:10.2307/2407258 Google Scholar
  26. Hughes BS, Cullum AJ, Bennett AF (2007) An experimental evolutionary study on adaptation to fluctuating pH in Escherichia coli. Physiol Biochem Zool 80:406–421. doi:10.1086/518353 CrossRefPubMedGoogle Scholar
  27. Joshi J, Schmid B, Caldeira MC et al (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544. doi:10.1046/j.1461-0248.2001.00262.x CrossRefGoogle Scholar
  28. Kidd PS, Proctor J (2001) Why plants grow poorly on very acidic soils: are ecologists missing the obvious? J Exp Bot 52:791–799. doi:10.1093/jexbot/52.359.1339 CrossRefPubMedGoogle Scholar
  29. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. doi:10.1146/annurev.arplant.55.031903.141655 CrossRefPubMedGoogle Scholar
  30. Koehn RK, Bayne BL (1989) Towards a physiological and genetical understanding of the energetics of the stress response. Biol J Linn Soc Lond 37:157–171CrossRefGoogle Scholar
  31. Lövblad G, Kindblom K, Grennfelt P, Hultberg H, Westling O (1995) Deposition of acidifying substances in Sweden. Ecol Bull 44:17–34Google Scholar
  32. Macnair MR (1987) Heavy metal tolerance in plants: a model evolutionary system. Trends Ecol Evol 2:354–359. doi:10.1016/0169-5347(87)90135-2 CrossRefGoogle Scholar
  33. Macnair MR, Watkins AD (1983) The fitness of the copper tolerance gene of Mimulus guttatus in uncontaminated soil. New Phytol 95:133–137. doi:10.1111/j.1469-8137.1983.tb03476.x CrossRefGoogle Scholar
  34. McKay JK, Bishop JG, Lin JZ, Richards JH, Sala A, Mitchell-Olds T (2001) Local adaptation across a climatic gradient despite small effective population size in the rare sapphire rockcress. Proc R Soc Lond B Biol Sci 268:1715–1721. doi:10.1098/rspb.2001.1715 CrossRefGoogle Scholar
  35. McNeilly T (1968) Evolution in closely adjacent plant populations III. Agrostis tenuis on a small copper mine. Heredity 23:99–108. doi:10.1038/hdy.1968.8 CrossRefGoogle Scholar
  36. Naumova TN, Osadtchiy JV, Sharma VK, Dijkhuis P, Ramulu KS (1999) Apomixis in plants: structural and functional aspects of diplospory in Poa nemoralis and P. palustris. Protoplasma 208:186–195. doi:10.1007/BF01279089 CrossRefGoogle Scholar
  37. Nicholls MK, McNeilly T (1985) The performance of Agrostis capillaris L genotypes, differing in copper tolerance, in ryegrass swards on normal soil. New Phytol 101:207–217. doi:10.1111/j.1469-8137.1985.tb02827.x CrossRefGoogle Scholar
  38. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  39. Poozesh V, Cruz P, Choler P, Bertoni G (2007) Relationship between the Al resistance of grasses and their adaptation to an infertile habitat. Ann Bot (Lond) 99:947–954. doi:10.1093/aob/mcm046 CrossRefGoogle Scholar
  40. Prentice HC, Lönn M, Lefkovitch LP, Runyeon H (1995) Associations between allele frequencies in Festuca ovina and habitat variation in the alvar grasslands on the Baltic island of Öland. J Ecol 83:391–402. doi:10.2307/2261593 CrossRefGoogle Scholar
  41. Räsänen K, Laurila A, Merilä J (2003) Geographic variation in acid stress tolerance of the moor frog, Rana arvalis I. Local adaptation. Evol Int J Org Evol 57:352–362. doi:10.1554/0014-3820(2003)057[0352:GVIAST]2.0.CO;2 Google Scholar
  42. Robarge WP, Johnson DW (1992) The effects of acidic deposition on forested soils. Adv Agron 47:1–83. doi:10.1016/S0065-2113(08)60488-5 CrossRefGoogle Scholar
  43. Rorison IH (1985) Nitrogen source and the tolerance of Deschampsia flexuosa, Holcus lanatus and Bromus erectus to aluminium during seedling growth. J Ecol 73:83–90. doi:10.2307/2259770 CrossRefGoogle Scholar
  44. Sambatti JBM, Rice KL (2006) Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis). Evol Int J Org Evol 60:696–710Google Scholar
  45. Schöttelndreier M, Norddahl MM, Ström L, Falkengren-Grerup U (2001) Organic acid exudation by wild herbs in response to elevated Al concentrations. Ann Bot (Lond) 87:769–775. doi:10.1006/anbo.2001.1405 CrossRefGoogle Scholar
  46. Snaydon RW, Davies TM (1982) Rapid divergence of plant populations in response to recent changes in soil conditions. Evol Int J Org Evol 36:289–297. doi:10.2307/2408047 Google Scholar
  47. Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101. doi:10.1016/S0169-5347(02)00044-7 CrossRefGoogle Scholar
  48. Tamm CO, Hallbäcken L (1986) Changes in soil pH over a 50-year period under different forest canopies in SW Sweden. Water Air Soil Pollut 31:337–341. doi:10.1007/BF00630849 CrossRefGoogle Scholar
  49. Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evol Int J Org Evol 39:505–522. doi:10.2307/2408649 Google Scholar
  50. You JF, He YF, Yang JL, Zheng SJ (2005) A comparison of aluminium resistance among Polygonum species originating on strongly acidic and neutral soils. Plant Soil 276:143–151. doi:10.1007/s11104-005-3786-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pernilla Göransson
    • 1
  • Stefan Andersson
    • 1
  • Ursula Falkengren-Grerup
    • 1
  1. 1.Plant Ecology and Systematics, Department of EcologyLund UniversityLundSweden

Personalised recommendations