Evolutionary Ecology

, Volume 23, Issue 6, pp 943–961 | Cite as

Why some rails have white tails: the evolution of white undertail plumage and anti-predator signaling

Original Paper

Abstract

Conspicuous plumage patches have evolved in birds as conspecific signals for mate attraction and assessment, intersexual competition or to signal alarm. Signals may alternatively be directed at potential predators to discourage pursuit. Rails (Family Rallidae) are ground-dwelling birds, many of which inhabit wetlands, while others occur in forests and grasslands. They are renown for their secretive nature and the tendency to flick their tails when observed. This behavior is more conspicuous in species with white undertail coverts that contrast sharply with darker body plumage. Using species comparisons and controlling for phylogeny, we investigated four hypotheses for the evolution of white undertail coverts in rails. We found little support for the hypothesis that white tails are sexually selected: white tails were not more common in species with polygamous as opposed to monogamous mating systems, species with sexual dimorphism, nor species that display their tails in courtship. Nor did our results support the hypothesis that white tail plumage evolved for intersexual competition during territorial interactions. Instead, we found that species that flock for at least part of the year and species found in open as opposed to concealing habitats were significantly more likely to have white undertail coverts. Rail species inhabiting concealing habitats are less commonly gregarious and more likely selected for crypsis. Using phylogenetically-controlled statistical inference we found that adaptation to open wetland habitats significantly precedes the evolution of white undertails, whereas gregariousness likely evolved later in some lineages. The inferred order of trait evolution suggests that this plumage characteristic could have been selected primarily for enhancement of an anti-predator signal rather than a social signal for conspecifics.

Keywords

Character evolution Concentrated changes test Discrete Omnibus test Phylogeny Plumage color Pursuit deterrent Rallidae Signaling 

References

  1. Alvarez F (1989) Uso del esculo anal por Gallinula chloropus en relacion con el peligro por predacion. Etologia 1:33–37Google Scholar
  2. Alvarez F (1993) Alertness signalling in two rail species. Anim Behav 46:229–1231. doi:10.1006/anbe.1993.1315 CrossRefGoogle Scholar
  3. Alvarez F, Braza F, Norzagaray A (1976) The use of the rump patch in the fallow deer (D. dama). Behaviour 56:298–308. doi:10.1163/156853976X00073 CrossRefGoogle Scholar
  4. Alvarez F, Sanchez C, Angulo S (2006) Relationships of tail-flicking, morphology and body condition in moorhens. J Field Orn 77:1–6CrossRefGoogle Scholar
  5. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  6. Aragones J, Arias de Reyna L, Recuerda P (1999) Visual communication and sexual selection in a nocturnal bird species, Caprimulgus ruficollis, a balance between crypsis and conspicuousness. Wilson Bull 111:340–345Google Scholar
  7. Beauchamp G, Heeb P (2001) Social foraging and the evolution of white plumage. Evol Ecol Res 3:703–720Google Scholar
  8. Bildstein KL (1983) Why white-tailed deer flag their tails. Am Nat 121:709–715. doi:10.1086/284096 CrossRefGoogle Scholar
  9. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, SunderlandGoogle Scholar
  10. Brooke ML (1998) Ecological factors influencing the occurrence of ‘flash marks’ in wading birds. Funct Ecol 12:339–346. doi:10.1046/j.1365-2435.1998.00204.x CrossRefGoogle Scholar
  11. Caro TM (1995) Pursuit-deterrence revisited. Trends Ecol Evol 10:500–503. doi:10.1016/S0169-5347(00)89207-1 CrossRefGoogle Scholar
  12. Caro TM (2005) The adaptive significance of coloration in mammals. Bioscience 55:125–136. doi:10.1641/0006-3568(2005)055[0125:TASOCI]2.0.CO;2 CrossRefGoogle Scholar
  13. Caro TM, Lombardo L, Goldizen AW, Kelly M (1995) Tail-flagging and other antipredator signals in white-tailed deer, new data and synthesis. Behav Ecol 6:442–450. doi:10.1093/beheco/6.4.442 CrossRefGoogle Scholar
  14. Clark RW (2005) Pursuit-deterrent communication between prey animals and timber rattlesnakes (Crotalus horridus): the response of snakes to harassment displays. Behav Ecol Sociobiol 59:258–261. doi:10.1007/s00265-005-0032-9 CrossRefGoogle Scholar
  15. Craig JL (1982) The behaviour of the pukeko, Porphyrio porphyrio melanotus. NZ J Zool 4:413–433Google Scholar
  16. Darwin C (1871) The descent of man and selection in relation to sex. John Murray, LondonGoogle Scholar
  17. Dial BE (1986) Tail display in two species of iguanid lizards, a test of the ‘predator signal’ hypothesis. Am Nat 127:103–111. doi:10.1086/284471 CrossRefGoogle Scholar
  18. Driskell AC, Pruett-Jones S, Hagevik S, Tarvin KA (2002) Evolutionary relationships among blue- and black-plumaged populations of the white- winged fairy-wren (Malurus leucopterus). Aust J Zool 50:581–595. doi:10.1071/ZO02019 CrossRefGoogle Scholar
  19. Elgar MA (1989) Predator vigilance and group size in mammals and birds, a critical review of the empirical evidence. Biol Rev Camb Philos Soc 64:13–33. doi:10.1111/j.1469-185X.1989.tb00636.x CrossRefPubMedGoogle Scholar
  20. Endler JA, Thery M (1996) Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am Nat 148:421–452. doi:10.1086/285934 CrossRefGoogle Scholar
  21. FitzGibbon CD, Fanshawe J (1988) Stotting in Thomson’s gazelles, an honest signal of condition. Behav Ecol Sociobiol 23:69–74. doi:10.1007/BF00299889 CrossRefGoogle Scholar
  22. Friedmann H, Smith FD (1950) A contribution to the ornithology of northeastern Venezuela. Proc US Natn Mus 100:411–538Google Scholar
  23. Galeotti P, Rubolini D, Dunn PO, Fasola M (2003) Colour polymorphism in birds, causes and functions. J Evol Biol 16:635–646. doi:10.1046/j.1420-9101.2003.00569.x CrossRefPubMedGoogle Scholar
  24. Gomez D, Thery M (2007) Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a neotropical rainforest bird community. Am Nat 169:S42–S61. doi:10.1086/510138 CrossRefGoogle Scholar
  25. Harvey PH, Pagel MD (1991) Oxford series in ecology and evolution. The comparative method in evolutionary biology, vol 1. Oxford University Press, OxfordGoogle Scholar
  26. Hasson O, Hibbard R, Ceballos G (1989) The pursuit deterrent function of tail-wagging in the zebra-tailed lizard (Callisaurus draconoides). Can J Zool/J Can Zool 67:1203–1209CrossRefGoogle Scholar
  27. Heinrich B (2007) The snoring bird. Harper Collins, New YorkGoogle Scholar
  28. Höglund JM, Eriksson M, Lindell L (1992) Females of the lek breeding Great Snipe, Gallinago media, prefer males with white tails. Anim Behav 40:23–32. doi:10.1016/S0003-3472(05)80662-1 CrossRefGoogle Scholar
  29. Holley AJF (1993) Do brown hares signal to foxes? Ethology 94:21–30CrossRefGoogle Scholar
  30. Huhta E, Rytkonen S, Solonen T (2003) Plumage brightness of prey increases predation risk, an among-species comparison. Ecology 84:1793–1799. doi:10.1890/0012-9658(2003)084[1793:PBOPIP]2.0.CO;2 CrossRefGoogle Scholar
  31. Johnson KP, Lanyon SM (2000) Evolutionary changes in color patches of blackbirds are associated with marsh nesting. Behav Ecol 11:515–519. doi:10.1093/beheco/11.5.515 CrossRefGoogle Scholar
  32. Kaufmann GW (1983) Displays and vocalizations of the sora and the Virginia rail. Wilson Bull 95:42–59Google Scholar
  33. Krebs EA, Putland DA (2004) Chic chicks, the evolution of chick ornamentation in rails. Behav Ecol 15:946–951. doi:10.1093/beheco/arh078 CrossRefGoogle Scholar
  34. Lazarus J (1979) The early warning function of flocking in birds, an experimental study with captive quelea. Anim Behav 27:855–865. doi:10.1016/0003-3472(79)90023-X CrossRefGoogle Scholar
  35. Lima SL (1995) Back to the basics of anti-predatory vigilance, the group size effect. Anim Behav 49:11–20. doi:10.1016/0003-3472(95)80149-9 CrossRefGoogle Scholar
  36. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation, a review and prospectus. Can J Zool/J Can Zool 68:619–640CrossRefGoogle Scholar
  37. Livezey BC (1998) A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philos Trans R Soc Lond B Biol Sci 353:1–72. doi:10.1098/rstb.1998.0353 CrossRefGoogle Scholar
  38. Lorch PD, Eadie JM (1999) Power of the concentrated changes test for correlated evolution. Syst Biol 48:170–191. doi:10.1080/106351599260517 CrossRefPubMedGoogle Scholar
  39. Maddison WP (1990) A method for testing the correlated evolution of two binary characters, are gains or losses concentrated on certain branches of a phylogenetic tree? Evol Int J Org Evol 44:539–557. doi:10.2307/2409434 Google Scholar
  40. Maddison WP, Maddison DR (2000) MacClade 4 analysis of phylogeny and character evolution. Sinauer Associates, SunderlandGoogle Scholar
  41. Marchetti K (1993) Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature 362:149–152. doi:10.1038/362149a0 CrossRefGoogle Scholar
  42. McNaught MK, Owens IPF (2002) Interspecific variation in plumage colour among birds, species recognition or light environments. J Evol Biol 15:505–514. doi:10.1046/j.1420-9101.2002.00431.x CrossRefGoogle Scholar
  43. McRae SB (1996) Family values, costs and benefits of communal breeding in the moorhen. Anim Behav 52:225–245. doi:10.1006/anbe.1996.0169 CrossRefGoogle Scholar
  44. Mumme RL (2002) Scare tactics in a neotropical warbler, white tail feathers enhance flush-pursuit foraging performance in the slate-throated redstart (Myioborus miniatus). Auk 119:1024–1035. doi:10.1642/0004-8038(2002)119[1024:STIANW]2.0.CO;2 CrossRefGoogle Scholar
  45. Murphy T (2006) Predator-elicited visual signal: why the turquoise-browed motmot wag-displays its racketed tail. Behav Ecol 17:547–553. doi:10.1093/beheco/arj064 CrossRefGoogle Scholar
  46. Olson SL (1973) A classification of the Rallidae. Wilson Bull 85:381–446Google Scholar
  47. Omland KE, Lanyon SM (2000) Reconstructing plumage evolution in orioles (Icterus), repeated convergence and reversal in patterns. Evol Int J Org Evol 54:2119–2133Google Scholar
  48. Pagel M (1994) Detecting correlated evolution on phylogenenies, a general method for the analysis of discrete characters. Proc R Soc Lond B Biol Sci 255:37–45. doi:10.1098/rspb.1994.0006 CrossRefGoogle Scholar
  49. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884. doi:10.1038/44766 CrossRefPubMedGoogle Scholar
  50. Pulliam HR (1973) On the advantages of flocking. J Theor Biol 38:419–422. doi:10.1016/0022-5193(73)90184-7 CrossRefPubMedGoogle Scholar
  51. Quenette PY (1990) Functions of vigilance in mammals, a review. Acta Oecol 11:801–818Google Scholar
  52. Randler C (2007) Observational and experimental evidence for function of tail flicking in Eurasian moorhen Gallinula chloropus. Ethology 113:629–639. doi:10.1111/j.1439-0310.2007.01369.x CrossRefGoogle Scholar
  53. Rheindt FE, Grafe TU, Abouheif E (2004) Rapidly evolving traits and the comparative method, how important is testing for phylogenetic signal? Evol Ecol Res 6:377–396Google Scholar
  54. Robbins LS, Nadean JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, Mountjoy KG, Cone RD (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72:827–834. doi:10.1016/0092-8674(93)90572-8 CrossRefPubMedGoogle Scholar
  55. Robert M, Laporte P (1997) Field techniques for studying breeding yellow rails. J Field Ornithol 68:56–63Google Scholar
  56. Rundus AS, Owings DH, Joshi SS, Chinn E, Giannini N (2007) Ground squirrels use an infrared signal to deter rattlesnake predation. Proc Natl Acad Sci USA 104:14372–14376. doi:10.1073/pnas.0702599104 CrossRefPubMedGoogle Scholar
  57. Ryan DA, Bawden KM, Bermingham KT, Elgar MA (1996) Scanning and tail-flicking in the Australian dusky moorhen (Gallinula tenebrosa). Auk 113:499–501Google Scholar
  58. Safran RJ, McGraw KJ (2004) Plumage coloration, not length or symmetry of tail-streamers, is a sexually selected trait in North American barn swallows. Behav Ecol 15:455–461. doi:10.1093/beheco/arh035 CrossRefGoogle Scholar
  59. Safran RJ, Neuman CR, McGraw KJ, Lovette IJ (2005) Dynamic paternity allocation as a function of male plumage color in barn swallows. Science 309:2210–2212. doi:10.1126/science.1115090 CrossRefPubMedGoogle Scholar
  60. Skutch AF (1994) The gray-necked wood-rail: habits, food, nesting and voice. Auk 111:200–204Google Scholar
  61. Slagsvold T, Lifjeld JT (1988) Plumage colour and sexual selection in the pied flycatcher Ficedula hypoleuca. Anim Behav 36:395–407. doi:10.1016/S0003-3472(88)80010-1 CrossRefGoogle Scholar
  62. Smythe N (1976) The function of mammalian alarm advertising: social signals or pursuit invitation? Am Nat 110:191–194. doi:10.1086/283059 CrossRefGoogle Scholar
  63. Stoner CJ, Caro TM, Graham CM (2003) The adaptive significance of coloration in lagomorphs. Biol J Linn Soc Lond 79:309–328. doi:10.1046/j.1095-8312.2003.00190.x CrossRefGoogle Scholar
  64. Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87:199–229. doi:10.1016/0025-5564(87)90074-5 CrossRefGoogle Scholar
  65. Taylor B, van Perlo B (1998) Rails: a guide to the rails, crakes gallinules and coots of the world. Pica Press, SussexGoogle Scholar
  66. Theron E, Hawkins K, Bermingham E, Ricklefs RE, Mundy NI (2001) The molecular basis of an avian plumage polymorphism in the wild, a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr Biol 11:550–557. doi:10.1016/S0960-9822(01)00158-0 CrossRefPubMedGoogle Scholar
  67. Trewick SA (1997) Flightlessness and phylogeny amongst endemic rails (Aves, Rallidae) of the New Zealand region. Philos Trans R Soc Lond B Biol Sci 352:429–446. doi:10.1098/rstb.1997.0031 CrossRefPubMedGoogle Scholar
  68. Woodland DJ, Jaafar Z, Knight M (1980) The pursuit deterrent function of alarm signals. Am Nat 115:748–753. doi:10.1086/283596 CrossRefGoogle Scholar
  69. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites, approximate methods. J Mol Evol 39:306–314. doi:10.1007/BF00160154 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of BiologyEast Carolina UniversityGreenvilleUSA

Personalised recommendations