Evolutionary Ecology

, Volume 23, Issue 6, pp 867–878 | Cite as

The roles of body size and phylogeny in fast and slow life histories

Original Paper

Abstract

Species’ life histories are often classified on a continuum from “fast” to “slow”, yet there is no consistently used definition of this continuum. For example, some researchers include body mass as one of the traits defining the continuum, others factor it out by analysing body-mass residuals, a third group performs both of these analyses and uses the terms “fast” and “slow” in both ways, while still others do not mention body mass at all. Our analysis of European and North American freshwater fish, mammals, and birds (N = 2,288 species) shows the fundamental differences between life-history patterns of raw data and of body-mass residuals. Specifically, in fish and mammals, the number of traits defining the continuum decreases if body-mass residuals are analysed. In birds, the continuum is defined by a different set of traits if body mass is factored out. Our study also exposes important dissimilarities among the three taxonomic groups analysed. For example, while mammals and birds with a “slow” life history have a low fecundity, the opposite is true for fish. We conclude that our understanding of life histories will improve if differences between patterns of raw data and of body-mass residuals are acknowledged, as well as differences among taxonomic groups, instead of using the “fast–slow continuum” too indiscriminately for any covarying traits that appear to suit the idea.

Keywords

Fast–slow continuum K-strategists Life-history patterns Allometric scaling r-strategists 

Supplementary material

10682_2008_9276_MOESM1_ESM.pdf (73 kb)
(PDF 73 kb)

References

  1. Banavar JR, Damuth J, Maritan A, Rinaldo A (2002) Supply-demand balance and metabolic scaling. Proc Natl Acad Sci USA 99:10506–10509. doi:10.1073/pnas.162216899 CrossRefPubMedGoogle Scholar
  2. Bennett PM, Owens IPF (2002) Evolutionary ecology of birds: life histories, mating systems and extinction. Oxford University Press, OxfordGoogle Scholar
  3. Bielby J, Mace GM, Bininda-Emonds ORP, Cardillo M, Gittleman JL, Jones KE et al (2007) The fast–slow continuum in mammalian life history: an empirical re-evaluation. Am Nat 169:748–757. doi:10.1086/516847 CrossRefPubMedGoogle Scholar
  4. Blackburn TM (1991) Evidence for a ‘fast–slow’ continuum of life-history traits among parasitoid Hymenoptera. Funct Ecol 5:65–74. doi:10.2307/2389556 CrossRefGoogle Scholar
  5. Brommer JE (2000) The evolution of fitness in life-history theory. Biol Rev Camb Philos Soc 75:377–404. doi:10.1017/S000632310000551X CrossRefPubMedGoogle Scholar
  6. Brown JH, Sibly RM (2006) Life-history evolution under a production constraint. Proc Natl Acad Sci USA 103:17595–17599. doi:10.1073/pnas.0608522103 CrossRefPubMedGoogle Scholar
  7. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. doi:10.1890/03-9000 CrossRefGoogle Scholar
  8. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241. doi:10.1126/science.1116030 CrossRefPubMedGoogle Scholar
  9. Charnov EL (1991) Evolution of life history variation among female mammals. Proc Natl Acad Sci USA 88:1134–1137. doi:10.1073/pnas.88.4.1134 CrossRefPubMedGoogle Scholar
  10. Darveau C-A, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170. doi:10.1038/417166a CrossRefPubMedGoogle Scholar
  11. Demetrius L (2006) The origin of allometric scaling laws in biology. J Theor Biol 243:455–467. doi:10.1016/j.jtbi.2006.05.031 CrossRefPubMedGoogle Scholar
  12. Duarte CM, Alcaraz M (1989) To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia 80:401–404. doi:10.1007/BF00379043 CrossRefGoogle Scholar
  13. Elgar MA (1990) Evolutionary compromise between a few large and many small eggs: comparative evidence in teleost fish. Oikos 59:283–287. doi:10.2307/3545546 CrossRefGoogle Scholar
  14. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. doi:10.1086/284325 CrossRefGoogle Scholar
  15. Fisher DO, Owens IPF, Johnson CN (2001) The ecological basis of life history variation in marsupials. Ecology 82:3531–3540CrossRefGoogle Scholar
  16. Franco M, Silvertown J (1996) Life history variation in plants: an exploration of the fast–slow continuum hypothesis. Philos Trans R Soc Lond B Biol Sci 351:1341–1348. doi:10.1098/rstb.1996.0117 CrossRefGoogle Scholar
  17. Gaillard J-M, Pontier D, Allainé D, Lebreton JD, Trouvilliez J, Clobert J (1989) An analysis of demographic tactics in birds and mammals. Oikos 56:59–76. doi:10.2307/3566088 CrossRefGoogle Scholar
  18. Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32. doi:10.2307/2992503 Google Scholar
  19. Garland T Jr, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208:3015–3035. doi:10.1242/jeb.01745 CrossRefPubMedGoogle Scholar
  20. Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31. doi:10.1038/250026a0 CrossRefGoogle Scholar
  21. Heppell SS, Caswell H, Crowder LB (2000) Life histories and elasticity patterns: perturbation analysis for species with minimal demographic data. Ecology 81:654–665Google Scholar
  22. Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci USA 102:7198–7202. doi:10.1073/pnas.0501271102 CrossRefPubMedGoogle Scholar
  23. Jeschke JM, Strayer DL (2006) Determinants of vertebrate invasion success in Europe and North America. Glob Change Biol 12:1608–1619. doi:10.1111/j.1365-2486.2006.01213.x CrossRefGoogle Scholar
  24. Jeschke JM, Gabriel W, Kokko H (in press) Population dynamics: r-strategists/K-strategists. In: Jørgensen SE (ed) Encyclopedia of ecology. Elsevier, AmsterdamGoogle Scholar
  25. Jones KE, MacLarnon A (2001) Bat life histories: testing models of mammalian life-history evolution. Evol Ecol Res 3:465–476Google Scholar
  26. Kokko H, López-Sepulcre A (2007) The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? Ecol Lett 10:773–782. doi:10.1111/j.1461-0248.2007.01086.x CrossRefPubMedGoogle Scholar
  27. Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, CambridgeGoogle Scholar
  28. Kozłowski J, Konarzewski M, Gawelczyk AT (2003) Intraspecific body size optimization produces interspecific allometries. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell, Oxford, pp 299–320Google Scholar
  29. Loehle C (1988) Tree life history strategies: the role of defenses. Can J Res 18:209–222Google Scholar
  30. MacArthur RH (1962) Some generalized theorems of natural selection. Proc Natl Acad Sci USA 48:1893–1897. doi:10.1073/pnas.48.11.1893 CrossRefPubMedGoogle Scholar
  31. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  32. Mayhew PJ (2006) Discovering evolutionary ecology. Oxford University Press, OxfordGoogle Scholar
  33. Maddison WP, Maddison DR (2004) Mesquite: a modular system for evolutionary analysis. Version 1.05. http://mesquiteproject.org
  34. Midford PE, Garland T Jr, Maddison WP (2005) PDAP package of Mesquite, version 1.06. http://mesquiteproject.org
  35. Mylius SD, Diekmann O (1995) On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos 74:218–224. doi:10.2307/3545651 CrossRefGoogle Scholar
  36. Nowak RM (1991) Walker’s mammals of the world, 5th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  37. Oli MK (2004) The fast–slow continuum and mammalian life-history patterns: an empirical evaluation. Basic Appl Ecol 5:449–463. doi:10.1016/j.baae.2004.06.002 CrossRefGoogle Scholar
  38. Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442. doi:10.1016/S0022-5193(05)80637-X CrossRefGoogle Scholar
  39. Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597. doi:10.1086/282697 CrossRefGoogle Scholar
  40. Read AF, Harvey PH (1989) Life history differences among the eutherian radiation. J Zool (Lond) 219:329–353CrossRefGoogle Scholar
  41. Reynolds JD (2003) Life histories and extinction risk. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell, Oxford, pp 195–217Google Scholar
  42. Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520Google Scholar
  43. Ricklefs RE (2000) Density dependence, evolutionary optimization, and the diversification of avian life histories. Condor 102:9–22. doi:10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2 CrossRefGoogle Scholar
  44. Roff DA (2002) Life history evolution. Sinauer, SunderlandGoogle Scholar
  45. Rueffler C, Egas M, Metz JAJ (2006) Evolutionary predictions should be based on individual-level traits. Am Nat 168:E148–E162. doi:10.1086/508618 CrossRefPubMedGoogle Scholar
  46. Rushton JP (1988) Race differences in behaviour: a review and evolutionary analysis. Pers Individ Dif 9:1009–1024. doi:10.1016/0191-8869(88)90135-3 CrossRefGoogle Scholar
  47. Sæther B-E (1987) The influence of body weight on the covariation between reproductive traits in European birds. Oikos 48:79–88. doi:10.2307/3565691 CrossRefGoogle Scholar
  48. Sæther B-E, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653Google Scholar
  49. Sæther B-E, Ringsby TH, Røskaft E (1996) Life history variation, population processes and priorities in species conservation: towards a reunion of research paradigms. Oikos 77:217–226. doi:10.2307/3546060 CrossRefGoogle Scholar
  50. Stearns SC (1977) The evolution of life history traits: a critique of the theory and a review of the data. Annu Rev Ecol Syst 8:145–171. doi:10.1146/annurev.es.08.110177.001045 CrossRefGoogle Scholar
  51. Stearns SC (1983) The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41:173–187. doi:10.2307/3544261 CrossRefGoogle Scholar
  52. Stearns SC (1984) The effects of size and phylogeny on patterns of covariation in the life history traits of lizards and snakes. Am Nat 123:56–72. doi:10.1086/284186 CrossRefGoogle Scholar
  53. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  54. Winemiller KO (1992) Life-history strategies and the effectiveness of sexual selection. Oikos 63:318–327. doi:10.2307/3545395 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Laboratory of Ecological and Evolutionary Dynamics, Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Evolutionary Ecology Unit, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
  3. 3.Section of Evolutionary Ecology, Department of Biology IILudwig-Maximilians-University MunichPlanegg-MartinsriedGermany

Personalised recommendations