Evolutionary Ecology

, 23:295 | Cite as

Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae)

Original Paper

Abstract

Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland.

Keywords

Autopolyploidy Dactylorhiza Hybrid zone Introgression ITS Morphometry Niche differentiation Plastid DNA Vegetation analysis 

References

  1. Aagaard SMD, Såstad SM, Greilhuber J, Moen A.(2005) A secondary hybrid zone between diploid Dactylorhiza incarnata ssp. cruenta and allotetraploid D. lapponica (Orchidaceae). Heredity 94:488–496PubMedCrossRefGoogle Scholar
  2. Anderson E (1948) Hybridization of the habitat. Evolution 2:1–9CrossRefGoogle Scholar
  3. Anonymous (2004) Natural color system. Scandinavian Colour Institute AB, StockholmGoogle Scholar
  4. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, OxfordGoogle Scholar
  5. Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233CrossRefGoogle Scholar
  6. Averyanov LV (1990) A review of the genus Dactylorhiza. In: Arditti J (ed) Orchid biology. Reviews and perspectives. V. Timber Press, Portland, pp 159–206Google Scholar
  7. Barthram GT (1986) Experimental techniques: the HFRO sward stick. Biennal report 1984–1985. Hill Farming Research Organisation, Penicuik, pp 29–30Google Scholar
  8. Bateman RM, Denholm I (1985) A reappraisal of the British and Irish dactylorchids, 2. The diploid marsh-orchids. Watsonia 15:321–355Google Scholar
  9. Batygina TB, Bragina EA, Vasilyeva VE (2003) The reproductive system and germination in orchids. Acta Biol Crac Ser Bot 45:21–34Google Scholar
  10. Buggs RJA, Pannell JR (2007) Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evolution 61:125–140PubMedCrossRefGoogle Scholar
  11. Cafasso D, Widmer A, Cozzolino S (2005) Chloroplast DNA inheritance in the orchid Anacamptis palustris using single-seed polymerase chain reaction. J Hered 96:66–70PubMedCrossRefGoogle Scholar
  12. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570CrossRefGoogle Scholar
  13. Chase MW, Hills HG (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220CrossRefGoogle Scholar
  14. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458CrossRefGoogle Scholar
  15. Cozzolino S, Cafasso D, Pellegrino G, Musacchio A, Widmer A (2003) Molecular evolution of a plastid tandem repeat locus in an orchid lineage. J Mol Evol 57:41–49CrossRefGoogle Scholar
  16. Delforge P (1995) Orchids of Britain and Europe. Harper Collins Publishers, LondonGoogle Scholar
  17. Devos N, Tyteca D, Raspé O, Wesselingh RA, Jacquemart A-L (2003) Patterns of chloroplast diversity among western European Dactylorhiza species (Orchidaceae). Plant Syst Evol 243:85–97CrossRefGoogle Scholar
  18. Devos N, Oh S-H, Raspé O, Jacquemart A-L, Manos PS (2005) Nuclear ribosomal DNA sequence variation and evolution of spotted marsh-orchids (Dactylorhiza maculata group). Mol Phylogenet Evol 36:568–580PubMedCrossRefGoogle Scholar
  19. Devos N, Raspé O, Oh S-H, Tyteca D, Jacquemart A-L (2006) The evolution of Dactylorhiza (Orchidaceae) allotetraploid complex: insights from nrDNA sequences and cpDNA PCR-RFLP data. Mol Phylogenet Evol 38:767–778PubMedCrossRefGoogle Scholar
  20. Doyle JJ, Doyle JH (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  21. Du Rietz GE (1921) Zur methodologischen Grundlage der modernen Pflanzensoziologie. Holzhausen, WienGoogle Scholar
  22. Ekstam U, Forshed N (1996) Äldre fodermarker. Naturvårdsverket, StockholmGoogle Scholar
  23. Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248Google Scholar
  24. Felber-Girard M, Felber F, Buttler A (1996) Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531–540CrossRefGoogle Scholar
  25. Grant V (1981) Plant speciation. Columbia University Press, New YorkGoogle Scholar
  26. Groll M (1965) Fruchtansatz, Bestäubung und Merkmalsanalyse bei diploiden und polyploiden Sippen von Dactylorchis (Orchis) maculata und Gymnadenia conopsea. Österr Bot Z 112:657–700CrossRefGoogle Scholar
  27. Hammer Ø, Harper DAT, Ryan PD (2001) Palaeontological statistics software package for education and data analysis. Palaentologia Electronica, 4(1):9Google Scholar
  28. Hardy OJ, Vanderhoeven S, De Loose M, Meerts P (2000) Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea s. l.) from a contact zone in the Belgian Ardennes. New Phytol 146:281–290CrossRefGoogle Scholar
  29. Hedrén M (1996) Genetic differentiation, polyploidization and hybridization in Northern European Dactylorhiza (Orchidaceae): evidence from allozyme markers. Plant Syst Evol 201:31–55CrossRefGoogle Scholar
  30. Hedrén M (2003) Plastid DNA variation in the Dactylorhiza incarnata/maculata polyploid complex and the origin of allotetraploid D. sphagnicola (Orchidaceae). Mol Ecol 12:2669–2680PubMedCrossRefGoogle Scholar
  31. Hedrén M, Klein E, Teppner H (2000) Evolution of polyploids in the European orchid genus Nigritella: evidence from allozyme data. Phyton 40:239–275Google Scholar
  32. Hedrén M, Fay MF, Chase MW (2001) Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Am J Bot 88:1868–1880CrossRefGoogle Scholar
  33. He slop-Harrison J (1948) Field studies in Orchis L., I. The structure of dactylorchid populations on certain islands in the Inner and Outer Hebrides. Trans Proc Bot Soc Edinb 35:26–66Google Scholar
  34. Heslop-Harrison J (1951) A comparison of some Swedish and British forms of Orchis maculata L. sens. lat. Svensk Bot Tidskr 45:608–635Google Scholar
  35. Hewitt GM (1988) Hybrid zones—natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167CrossRefGoogle Scholar
  36. Husband BC, Schemske DW (1998) Cytotype distribution at a diploid–tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694CrossRefGoogle Scholar
  37. Hylander N (1966) Nordisk kärlväxtflora II. Almquist & Wiksell, StockholmGoogle Scholar
  38. Johnson MTJ, Husband BC, Burton TL (2003) Habitat differentiation between diploid and tetraploid Galax urceolata (Diapensiaceae). Int J Plant Sci 164:703–710CrossRefGoogle Scholar
  39. Krok Th OBN, Almquist S (1994) Svensk flora: Fanerogamer och ormbunksväxter. Liber, StockholmGoogle Scholar
  40. Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43CrossRefGoogle Scholar
  41. Lid J, Lid DT (2005) Norsk flora. Det Norske Samlaget, OsloGoogle Scholar
  42. Lumaret R, Guillerm JL, Delay J, Ait Lhaj Loufti A, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis gilomerata L. from Galicia (Spain). Oecologia 73:436–446CrossRefGoogle Scholar
  43. Lynch M, Conery JS (2000) The evolutionary fate of duplicated genes. Science 290:1151–1154PubMedCrossRefGoogle Scholar
  44. Mossberg B, Stenberg L (2003) Den nya nordiska floran. Wahlström & Widstrand, StockholmGoogle Scholar
  45. Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:263–378Google Scholar
  46. Ohta T, Kimura M (1973) The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genet Res 22:201–204CrossRefGoogle Scholar
  47. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437PubMedCrossRefGoogle Scholar
  48. Pillon Y, Fay MF, Hedrén M, Devey D, Shipunov A, van der Bank M, Bateman RM, Chase MW (2007) Insights into the evolution and biogeography of Western European species complexes in Dactylorhiza (Orchidaceae). Taxon 54(6) (in press)Google Scholar
  49. Pinceel J, Jordaens K, Pfenninger M, Backeljau T (2005) Rangewide phylogeography of a terrestrial slug in Europe: evidence for Alpine refugia and rapid colonization after the Pleistocene glaciations. Mol Ecol 14:1133–1150PubMedCrossRefGoogle Scholar
  50. Prentice HC, Cramer W (1990) The plant community as a niche bioassay: environmental correlates of local variation in Gypsophila fastigiata. J Ecol 78:313–325CrossRefGoogle Scholar
  51. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  52. Reinhard HR (1985) Skandinavische und alpine Dactylorhiza-arten (Orchidaceae). Ergebnisse populationsstatistischer Untersuchungen. Mitt Bl Arbeitskr Heim Orch Baden-Württemberg 17:321–416Google Scholar
  53. Rothera SL, Davy AJ (1986) Polyploidy and habitat differentiation in Deschampsia cespitosa. New Phytol 102:449–467CrossRefGoogle Scholar
  54. Schönswetter P, Paun O, Tribsch A, Niklfeld H (2003) Out of the Alps: colonization of northern Europe by East Alpine populations of the glacier buttercup Ranunculus glacialis L (Ranunculaceae). Mol Ecol 12:3373–3381PubMedCrossRefGoogle Scholar
  55. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555PubMedCrossRefGoogle Scholar
  56. Segraves KA, Thompson JN (1999) Plant polyploidy and pollination. Floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114–1127CrossRefGoogle Scholar
  57. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  58. Shaw JA (1998) Morphometric analyses of mixed Dactylorhiza colonies (Orchidaceae) on industrial waste sites in England. Bot J Linn Soc 128:385–401Google Scholar
  59. Shipunov AB, Fay MF, Pillon Y, Bateman RM, Chase MW (2004) Dactylorhiza (Orchidaceae) in European Russia: combined molecular and morphological analysis. Am J Bot 91:1419–1426CrossRefGoogle Scholar
  60. Soliva M, Widmer A (1999) Genetic and floral divergence among sympatric populations of Gymnadenia conopsea s.l. (Orchidaceae) with different flowering phenology. Int J Plant Sci 160:897–905PubMedCrossRefGoogle Scholar
  61. Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273CrossRefGoogle Scholar
  62. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352PubMedCrossRefGoogle Scholar
  63. Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since Plant speciation. New Phytol 161:173–191CrossRefGoogle Scholar
  64. Soó R (1960) Synopsis generis Dactylorhiza (Dactylorchis). Ann Univ Sci Budap Rolando Eotvos Nom Sect Biol 3:335–357Google Scholar
  65. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  66. Stebbins GL (1984) Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot Helv 94:1–13Google Scholar
  67. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613CrossRefGoogle Scholar
  68. Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52:477–497CrossRefGoogle Scholar
  69. Ursenbacher S, Carlsson M, Helfer V, Tegelström H, Fumagalli L (2006) Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Mol Ecol 15:3425–3437PubMedCrossRefGoogle Scholar
  70. Vöth W, Greilhuber J (1980) Zur Karyosystematik von Dactylorhiza maculata s.l. und ihrer Verbreitung, insbesondere in Niederösterreich. Linzer Biol Beitr 12:415–468Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Plant Ecology and Systematics, Department of EcologyLund UniversityLundSweden

Personalised recommendations