Evolutionary Ecology

, Volume 21, Issue 5, pp 635–650 | Cite as

Genetic variation for shell traits in a direct-developing marine snail involved in a putative sympatric ecological speciation process

  • Paula Conde-Padín
  • Antonio Carvajal-Rodríguez
  • Mónica Carballo
  • Armando Caballero
  • Emilio Rolán-AlvarezEmail author


Populations of the marine gastropod Littorina saxatilis from exposed rocky shores of NW Spain provide one of the few putative cases of sympatric ecological speciation. Two ecotypes with large differences in shell morphology and strong assortative mating are living at different vertical levels of the shore separated by a few meters. It has been hypothesized that shell size is the main determinant for the reproductive isolation observed between the ecotypes, and that several shell shape traits are subject to divergent natural selection and are responsible for the adaptation of each ecotype to its respective habitat. Using embryos extracted from wild females we obtain estimates of genetic variation for shell size and shape and compare them with those from neutral molecular markers. Estimates of heritability are significantly larger for the ecotype found in the upper shore than for that in the lower shore, in concordance with a similar result observed for heterozygosity of neutral markers. The large genetic differentiation between ecotypes for the shell traits, contrasting the smaller close to neutral differentiation between populations of the same ecotype, supports the implication of the traits in adaptation.


Genetic differentiation·Geometric morphometrics Hybrid zone Heritability Phenotypic plasticity 



We thank Pilar Alvariño and Nieves Santamaría for technical help, and Carlos López-Fanjul, Dr. Jormalainen, and two anonymous referees for useful comments on the manuscript. This works has been partially funded by Ministerio de Educación y Ciencia (CGL2004-03920 BOS; VEM2003-20047) and Fondos Feder, Xunta de Galicia (PGIDT05PXIC31002PN), and Universidade de Vigo. P.C-P. was supported by a research fellowship from Ministerio de Educación y Ciencia.


  1. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Italian J Zool 71:5–16 CrossRefGoogle Scholar
  2. Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, New YorkGoogle Scholar
  3. Carballo M, Caballero A, Rolán-Alvarez E (2005) Habitat-dependent ecotype micro-distribution at the mid-shore in natural populations of Littorina saxatilis. Hydrobiologia 548:307–311CrossRefGoogle Scholar
  4. Carballo M, García C, Rolán-Alvarez E (2001) Heritability of shell traits in wild Littorina saxatilis populations: results across a hybrid zone. J Shellfish Res 20:415–422Google Scholar
  5. Carvajal-Rodríguez A, Conde-Padín P, Rolán-Alvarez E (2005) Decomposing shell form into size and shape by geometric morphometric methods in two sympatric ecotypes of Littorina saxatilis. J Molluscan Studies 71:313–318CrossRefGoogle Scholar
  6. Carvajal-Rodríguez A, Rodríguez MG (2005) MODICOS: morphometric and distance computational software oriented for evolutionary studies. Online J Bioinform 6:34–41Google Scholar
  7. Cavalcanti MJ, Monteiro LR, Duarte Lopes PR (1999) Landmark-based morphometric analysis in selected species of serranid fishes (Perciformes: Teleostei). Zoo Studies 38:287–294Google Scholar
  8. Crnokrak P, Roff DA (1995) Dominance variance: associations with selection and fitness. Heredity 75:530–540Google Scholar
  9. Cruz R, Carballo M, Conde-Padín P, Rolán-Alvarez E (2004a) Testing alternative models for sexual isolation in natural populations of Littorina saxatilis: indirect support for by-product ecological speciation? J Evol Biol 17:288–293CrossRefGoogle Scholar
  10. Cruz R, Rolán-Alvarez E, García A (2001) Sexual selection on phenotypic traits in a hybrid zone of Littorina saxatilis (Olivi). J Evol Biol 14:773–785CrossRefGoogle Scholar
  11. Cruz R, Vilas C, Mosquera J, García C (2004b) Relative contribution and dispersal and natural selection to the maintenance of a hybrid zone in Littorina. Evolution 58:2734–2746Google Scholar
  12. DeRose MA, Roff DA (1999) A comparison of inbreeding depression in life-history and morphological traits in animals. Evolution 53:1288–1292CrossRefGoogle Scholar
  13. Erlandsson J, Kostylev V, Rolán-Alvarez E (1999) Mate search and aggregation behaviour in the Galician hybrid zone of Littorina saxatilis. J Evol Biol 12:891–896CrossRefGoogle Scholar
  14. Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics, 4th edn. Longman, HarlowGoogle Scholar
  15. Fernández J, Galindo J, Fernández B, Pérez-Figueroa A, Caballero A, Rolán-Alvarez E (2005) Genetic differentiation and estimation of effective population size and migration rates in two sympatric ecotypes of the marine snail Littorina saxatilis. J Heredity 96:1–5CrossRefGoogle Scholar
  16. Filchak KE, Roethele JB, Feder JL (2000) Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407:739–742PubMedCrossRefGoogle Scholar
  17. Guralnick RP, Kurpius J (2001) Spatial and temporal growth patterns in the phenotypically variable Littorina saxatilis: surprising patterns emerge from chaos. In: Zeldich M (ed) Beyond heterochrony. John Wiley and Sons, New York, pp 195–228Google Scholar
  18. Hendry AP (2002) QST > = ≠< FST? Tren Ecol Evol 17:502Google Scholar
  19. Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature 411:302–305PubMedCrossRefGoogle Scholar
  20. Johannesson K (2003) Evolution in Littorina: ecology matters. J Sea Res 49:107–117CrossRefGoogle Scholar
  21. Johannesson B, Johannesson K (1996) Population differences in behaviour and morphology in the snail Littorina saxatilis: phenotypic plasticity or genetic differentiation? J Zool 240:475–493CrossRefGoogle Scholar
  22. Johannesson K, Johannesson B, Rolán-Alvarez E (1993) Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail Littorina saxatilis. Evolution 47:1770–1787CrossRefGoogle Scholar
  23. Johannesson K, Rolán-Alvarez E, Ekendahl A (1995) Incipient reproductive isolation between two sympatric morphs of the intertidal snail Littorina saxatilis. Evolution 49:1180–1190CrossRefGoogle Scholar
  24. Klingenberg CP, Leamy LJ (2001) Quantitative genetics of geometric shape in the mouse mandible. Evolution: 55:2342–2352PubMedGoogle Scholar
  25. Le Corre V, Kremer A (2003) Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164:1205–1219PubMedGoogle Scholar
  26. López-Fanjul C, Fernández A, Toro MA (2003) The effect of non-additive gene action on the neutral quantitative index of population divergence. Genetics 164:1627–1633PubMedGoogle Scholar
  27. Macnair MR, Christie P (1983) Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus? Heredity 50:295–302Google Scholar
  28. McKay J K, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Tren Ecol Evol 17:285–291CrossRefGoogle Scholar
  29. McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM, Jamieson L, Chou J, Schluter D (2004) Evidence for ecology’s role in speciation. Nature 429:294–298 PubMedCrossRefGoogle Scholar
  30. Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903CrossRefGoogle Scholar
  31. Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218 CrossRefGoogle Scholar
  32. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York Google Scholar
  33. Newkirk GF, Doyle RW (1975) Genetic analysis of shell-shape variation in Littorina saxatilis on the environmental cline. Marine Biol 30:227–237CrossRefGoogle Scholar
  34. Nosil P, Crespi BJ, Sandoval C (2002) Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:441–443CrossRefGoogle Scholar
  35. Peres-Neto PR, Olden JD (2001) Assessing the robustness of randomization tests: examples from behavioural studies. Animal Behav 61:79–86CrossRefGoogle Scholar
  36. Pérez-Figueroa A, Cruz F, Carvajal-Rodríguez A, Rolán-Alvarez E, Caballero A (2005) The evolutionary forces maintaining a wild polymorphism of Littorina saxatilis: model selection by computer simulations. J Evol Biol 18:191–202PubMedCrossRefGoogle Scholar
  37. Pfenninger M, Eppenstein A, Magnin F (2003) Evidence for ecological speciation in the sister species Candidula unifasciata (Poiret, 1801) and C. rugosiuscula (Michaud, 1831) (Helicellinae, Gastropoda). Biol J Linnean Soc 79:611–628CrossRefGoogle Scholar
  38. Raffaelli D, Hawkins S (1996) Intertidal ecology. Chapman and Hall, LondonGoogle Scholar
  39. Raymond M, Rousset F (1995) GENEPOP (version 1.2): a population genetics software for exact tests and ecumenicism. J Heredity 86:248–249Google Scholar
  40. Reid DG (1996) Systematics and evolution in Littorina. The Ray Society, DorchesterGoogle Scholar
  41. Riska B, Prout T, Turelli M (1989) Laboratory estimates of heritabilities and genetic correlations in nature. Genetics 123:865–871PubMedGoogle Scholar
  42. Rohlf FJ (1993) Relative warp analysis and an example of its application to mosquito wings. In: Marcus LF, Bello E, García Valdecasas A (eds) Contributions to morphmetrics, Vol. 8. Museo Nacional de Ciencias Naturales, Madrid, pp 131–159Google Scholar
  43. Rohlf FJ (1998) TPSrelw: RW, version 1.20. New York State University, Stony BrookGoogle Scholar
  44. Rohlf FJ, Bookstein FL (2003) Computing the uniform component of shape variation. Syst Biol 52:66–69PubMedCrossRefGoogle Scholar
  45. Rolán-Alvarez E (2006) Sympatric speciation as a by-product of ecological adaptation in the Galician Littorina saxatilis hybrid zone. J Molluscan Studies (in press)Google Scholar
  46. Rolán-Alvarez E, Carballo M, Galindo J, Morán P, Fernández B, Caballero A, Cruz R, Boulding EG, Johannesson K (2004) Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes. Mol Ecol 13:3415–3424PubMedCrossRefGoogle Scholar
  47. Rolán-Alvarez E, Erlandsson J, Johannesson K, Cruz R (1999) Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. J Evol Biol 12:879–890CrossRefGoogle Scholar
  48. Rolán-Alvarez E, Johannesson K, Erlandsson J (1997) The maintenance of a cline in the marine snail Littorina saxatilis— the role of home site advantage and hybrid fitness. Evolution 51:1838–1847CrossRefGoogle Scholar
  49. Rundle HD, Nagel L, Boughman JW, Schluter D (2000) Natural selection and parallel speciation in sympatric sticklebacks. Science 287:306–308PubMedCrossRefGoogle Scholar
  50. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352CrossRefGoogle Scholar
  51. Schluter D (2001) Ecology and the origin of species. Tren Ecol Evol 16:372–380CrossRefGoogle Scholar
  52. Spitze K (1993) Population structure in Daphnia obtuse: quantitative genetic and allozymic variation. Genetics 135:367–374PubMedGoogle Scholar
  53. Schilthuizen M, Cabanban AS, Haase M (2005) Possible speciation with gene flow in tropical cave snails. J Zoolog Syst Evol Res 43:133–138CrossRefGoogle Scholar
  54. Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Phil Trans Roy Soc, Series B 360:1367–1378CrossRefGoogle Scholar
  55. Via S, Bouk AC, Skillman S (2000) Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 54:1626–1637PubMedGoogle Scholar
  56. Wright S (1951) The genetic structure of populations. Ann Eug 15:323–354 Google Scholar
  57. Whitlock MC (1999) Neutral additive genetic variance in a metapopulation. Genet Res 74:215–221PubMedCrossRefGoogle Scholar
  58. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for Biologists. A primer. Elsevier Academic Press, LondonGoogle Scholar
  59. Zeng Z, Liu J, Stam LF , Kao C, Mercer JM, Laurie CC (2000) Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154:299–310PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Paula Conde-Padín
    • 1
  • Antonio Carvajal-Rodríguez
    • 1
    • 2
  • Mónica Carballo
    • 1
  • Armando Caballero
    • 1
  • Emilio Rolán-Alvarez
    • 1
    Email author
  1. 1.Departamento de Bioquímica, Genética e Inmunología, Facultad de BiologíaUniversidad de VigoVigoSpain
  2. 2.Department of Microbiology and Molecular BiologyBrigham Young UniversityProvoUSA

Personalised recommendations