Advertisement

Evolutionary Ecology

, Volume 20, Issue 5, pp 407–413 | Cite as

Absence of clinal variation in virgin retention capacity in Australian Drosophila melanogaster

  • Carla M. SgròEmail author
  • Andréa Magiafoglou
  • Laetitia Faine
  • Ary A. Hoffmann
Research Article

Abstract

The ability of virgin Drosophila melanogaster adults to retain eggs is thought to be an adaptation to persisting in temperate areas, based on differences in this trait between European and African populations, and based on seasonal changes in this trait in France. By retaining eggs in the absence of males and under conditions of poorer nutrition (conditions common in temperate areas during colder months), females reduce the wastage of resources and increase their probability of surviving spring into summer, enabling them to initiate summer population expansions. To test for variation in virgin egg retention along a climatic gradient, we characterized clinal variation in strains collected from eastern Australia extending from temperate Tasmania to tropical northern Queensland. Despite testing a large number of strains and repeated testing of the cline ends, we did not detect any evidence for clinal variation in virgin egg retention. Therefore although D. melanogaster in temperate Australia overwinter at the adult stage, there is no evidence for selection on virgin retention capacity producing clinal patterns. This contrasts with other evidence for clinal variation in egg production patterns over winter.

Keywords

D. melanogaster Virgin egg retention Cline Australia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouletreau, J 1978Ovarian activity and reproductive potential in a natural population of Drosophila melanogaster Oecologia33319342CrossRefGoogle Scholar
  2. Bouletreau-Merle, J, Fouillet, P 2002How to overwinter and be a founder: egg-retention phenotypes and mating status in Drosophila melanogaster Evol Ecol16309332CrossRefGoogle Scholar
  3. Bouletreau-Merle, J, Allemand, R, Cohet, Y, David, JR 1982Reproductive strategy in Drosophila melanogaster: Significance of genetic divergence between temperate and tropical populationsOecologia53323329CrossRefGoogle Scholar
  4. Bouletreau-Merle, J, Fouillet, P, Terrier, O 1992Clinal and seasonal variations in initial retention capacity of virgin Drosophila melanogaster females as a strategy for fitnessEvol Ecol6223242CrossRefGoogle Scholar
  5. Bouletreau-Merle, J, Fouillet, P, Varaldi, J 2003Divergent strategies in low temperature environment for the sibling species Drosophila melanogaster and D. simulans: overwintering in extension border areas of France and comparison with African populationsEvol Ecol17523548CrossRefGoogle Scholar
  6. Bouletreau-Merle, J, Terrier, O, Fouillet, P 1989Chromosomal analysis of initial retention capacity in virgin Drosophila melanogaster femalesHeredity62145151PubMedGoogle Scholar
  7. Bouletreau-Merle, J, Terrier, O, Fouillet, P 1998A chromosomal analysis of the phenotypic plasticity of some life history traits in relation to developmental temperatureBehav Genet28403414PubMedCrossRefGoogle Scholar
  8. Calboli FCF, Kennington JW, Patridge L (2003) QTL mapping reveals a striking coincidence in the positions of genomic regions associated with adaptive variation in body size clines in parallel clines of Drosophila melanogaster on different continents. Evolution 57: 2653–2658Google Scholar
  9. Dahlgaard, J, Hassan, E, Loeschcke, V 2001Behavioural differentiation in oviposition timing in Drosophila buzatii from highland and lowland populations in Argentina: plasticity or thermal adaptation?Evolution55738747PubMedCrossRefGoogle Scholar
  10. Gockel J, Robinson SW, Kennington JW, Goldstein DB, Partridge L (2002). Quantitative genetic analysis of natural variation in body size in Drosophila melanogaster Heredity 89: 145–153Google Scholar
  11. Hoffmann AA, Parsons PA (1988) The analysis of quantitative variation in natural populatiions with isofemale lines. Genet Sel Evol 20: 87–98Google Scholar
  12. Hoffmann, AA, Anderson, A, Hallas, R 2002Opposing clines for high and low temperature resistance in Drosophila melanogaster Ecol Letts5614618CrossRefGoogle Scholar
  13. Hoffmann, AA, Hallas, R, Anderson, A, Telonis-Scott, M 2005Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster J Evol Biol18804810PubMedCrossRefGoogle Scholar
  14. Hoffmann, AA, Hallas, R, Sinclair, C, Mitrovski, P 2001Levels of variation in stress resistance in Drosophila among strains, local populations and geographic regions: patterns of desiccation, starvation, cold resistance and associated traitsEvolution5516211630PubMedCrossRefGoogle Scholar
  15. James AC, Azeredo RBR, Partridge L (1995) Cellular basis and developmental timing in a size cline of Drosophila melanogaster Genetics 140: 659–666Google Scholar
  16. Karan, D, Dihya, N, Munial, AK, Gibert, P, Moreteau, B, Parkash, R, David, JR 1998Desiccation and starvation tolerance of adult Drosophila: opposite latitudinal clines in natural populations of three different speciesEvolution52825831CrossRefGoogle Scholar
  17. Kennington, JW, Gockel, J, Partridge, L 2003Testing for asymmetrical gene flow in a Drosophila melanogaster body-size clineGenetics165667673PubMedGoogle Scholar
  18. Mitrovski, P, Hoffmann, AA 2001Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: evidence for clinal variation under semi-natural conditionsProc Roy Soc B26821632168CrossRefGoogle Scholar
  19. Schmidt, PS, Matzkin, L, Ippolito, M, Eanses, WF 2005aGeographic variation in diapause incidence, life history traits and climatic adaptation in Drosophila melanogaster Evolution5917211732CrossRefGoogle Scholar
  20. Schmidt, PS, Paaby, AB, Heschel, MS 2005bGenetic variance for diapause expression and associated life histories in Drosophila melanogaster Evolution5926162625CrossRefGoogle Scholar
  21. Umina, P, Weeks, AR, Kearney, MR, McKechnie, SW, Hoffmann, AA 2005A rapid shift in a classic clinal pattern in Drosophila reflecting climate changeScience308691693PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Carla M. Sgrò
    • 1
    Email author
  • Andréa Magiafoglou
    • 1
  • Laetitia Faine
    • 1
  • Ary A. Hoffmann
    • 1
  1. 1.Centre for Environmental Stress and Adaptation Research, Department of GeneticsThe University of Melbourne VictoriaAustralia

Personalised recommendations