Evolutionary Ecology

, Volume 19, Issue 6, pp 551–561

Have Genetic Trade-Offs in Host Use been Overlooked in Arthropods?

Research Article

Abstract

A popular hypothesis to explain the high degree of host specialisation observed among mites and insects is the existence of host-associated fitness trade-offs. According to this theory, adaptation to a host results in a relatively poorer performance on alternative hosts due to the antagonistic pleiotropic action of one or more genes. Evidence in favour of the genetic trade-off hypothesis is however scarce. Recent ecological work has shown that the optimisation of adult performance drives the evolution of host choice in at least some phytophagous insects. Yet, most ecological and evolutionary studies on host choice assume that females maximise their fitness by optimising offspring performance. In this paper, we investigate whether a general lack of attention for the role of adult performance in host choice may have diminished the chance of detecting genetic trade-offs. We reviewed the literature on genetic trade-offs and showed that most studies neglected host specific variation in adult performance. Moreover, studies that considered both adult and offspring performance had a higher chance of detecting genetic fitness trade-offs. Our results also suggested that studies on asexual reproducing species tend to detect trade-offs more often than studies on obligate sexual reproducing species. We argue that future studies on genetic trade-offs should take all fitness parameters into account in order to be conclusive. This approach may reveal (i) that genetic trade-offs are more common than hitherto reported and/or (ii) that genetic trade-offs are more common, or more easily detected among asexual reproducing species like mites and aphids.

Keywords

antagonistic pleiotropy fitness trade-off host range evolution host choice mites negative genetic correlations phytophagous insects selection experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A.A. 2000Host-range evolution: adaptation and trade-offs in fitness of mites on alternative hostsEcology81500508Google Scholar
  2. Awmack, C.S., Leather, S.R. 2002Host plant quality and fecundity in herbivorous insectsAnnu. Rev. Entomol.47817844CrossRefPubMedGoogle Scholar
  3. Ballabeni, P., Rahier, M. 2000A quantitative genetic analysis of leaf beetle larval performance on two natural hosts: including a mixed dietJ. Evol. Biol.1398106CrossRefGoogle Scholar
  4. Ballabeni, P., Gotthard, K., Kayumba, A., Rahier, M. 2003Local adaptation and ecological genetics of host-plant specialization in a leaf beetleOikos1017078CrossRefGoogle Scholar
  5. Bernays, E.A. 1991Evolution of insect morphology in relation to plantsPhil. Trans. R. Soc. Lond. B.333257264Google Scholar
  6. Bernays, E.A., Graham, M. 1988On the evolution of host specificity in phytophagous arthropodsEcology69886892Google Scholar
  7. Bultin, R. 1987A new approach to sympatric speciationTrends Ecol. Evol.2310311CrossRefGoogle Scholar
  8. Caballero, P.P., Ramirez, C.C., Niemeyer, H.M. 2001Specialisation pattern of the aphid Rhopalosiphum maidis is not modified by experience on a novel hostEntomol. Exp. Appl.1004352CrossRefGoogle Scholar
  9. Carolina, J.C., Herr, , Johnson, M.W. 1992Host plant preference of Liriomyza sativae (Diptera, Agromyzidae) populations infesting green onion in HawaiiEnviron. Entomol.2110971102Google Scholar
  10. Carrière, Y., Roitberg, B.D. 1994Trade-offs in responses to host plants within a population of a generalist herbivore, Choristoneura rosaceanaEntomol. Exp. Appl.72173180Google Scholar
  11. Carroll, S.P., Dingle, H., Klassen, S.P. 1997Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bugEvolution5111821188Google Scholar
  12. Courtney, S.P., Kibota, T.T. 1989

    Mother doesn’t know best: selection of hosts by ovipositing insects

    Bernays, E.A. eds. Insect–Plant InteractionsCRC PressBoca Raton161188
    Google Scholar
  13. Jong, P.W., Nielsen, J.K. 2002Host plant use of Phyllotreta nemorum: do coadapted gene complexes play a roleEntomol. Exp. Appl.104207215CrossRefGoogle Scholar
  14. Dethier, V.G. 1954Evolution of feeding preference in phytophagous insectsEvolution83354Google Scholar
  15. Douglas, A.E. 1997Provenance, experience and plant utilisation by the polyphagous aphid, Aphis fabaeEntomol. Exp. Appl.83161171CrossRefGoogle Scholar
  16. Drès, M., Mallet, J. 2002Host races in plant-feeding insects and their importance in sympatric speciationPhil. Trans. R. Soc. Lond. B.357471492CrossRefGoogle Scholar
  17. Endler, J.A. 2000

    Adaptive genetic variation in the wild

    Mousseau, T.A.Sinervo, B.Endler, J.A. eds. Adaptive Genetic Variation in the WildOxford University PressOxford251260
    Google Scholar
  18. Etges, W.J. 1993Genetics of host-cactus response and life-history evolution among ancestral and derived populations of cactophilic Drosophila mojavensisEvolution47750767Google Scholar
  19. Falconer, D.S., Mackay, T.F.C. 1996Introduction to Quantitative GeneticsLongmanEssexGoogle Scholar
  20. Fox, C.W. 1993A quantitative genetic analysis of oviposition preference and larval performance on two hosts in the bruchid beetle, Callosobruchus maculatusEvolution47166175Google Scholar
  21. Fox, C.W., Caldwell, R.L. 1994Host-associated fitness trade-offs do not limit the evolution of␣diet breadth in the small milkweed bug Lygaeus kalmii (Hemiptera: Lygaeidae)Oecologia97382389Google Scholar
  22. Fox, C.W., Waddell, K.J., Mousseau, T.A. 1994Host-associated fitness variation in a seed beetle (Coleoptera: Bruchidae): evidence for local adaptation to a poor quality hostOecologia99329336CrossRefGoogle Scholar
  23. Fox, L.R., Morrow, P.A. 1981Specialization: species property or local phenomenon?Science211 887893Google Scholar
  24. Fry, J.D. 1990Trade-offs in fitness on different hosts: evidence from a selection experiment with a phytophagous miteAm. Nat.136569580CrossRefGoogle Scholar
  25. Fry, J.D. 1992The mixed-model analysis of variance applied to quantitative genetics: biological meaning of the parametersEvolution46540550Google Scholar
  26. Fry, J.D. 1993The “general vigor” problem: Can antagonistic pleiotropy be detected when genetic covariances are positive?Evolution47327333Google Scholar
  27. Fry, J.D. 1996The evolution of host specialization: are trade-offs overrated?Am. Nat.148S84S107CrossRefGoogle Scholar
  28. Fry, J.D. 2003Detecting ecological trade-offs using selection experimentsEcology8416721678Google Scholar
  29. Futuyma, D.J., Philippi, T.E. 1987Genetic variation and covariation in response to host plants by Alsophila pometaria (Lepidoptera: Geometridae)Evolution41269279Google Scholar
  30. Gould, F. 1979Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae KochEvolution33791802Google Scholar
  31. Gu, H., Cao, A., Walter, G.H. 2001Host selection and utilisation of Sonchus oleraceus (Asteraceae) by Helicoverpa armigera (Lepidoptera: Noctuidae): a genetic analysisAnn. Appl. Biol.138293299Google Scholar
  32. Hare, J.D., Kennedy, G.G. 1986Genetic variation in plant-insect associations: survival of Leptinotarsa decemlineata populations on Solanum carolinenseEvolution4010311043Google Scholar
  33. Hawthorne, D.J., Via, S. 2001Genetic linkage of ecological specialization and reproductive isolation in pea aphidsNature412904907CrossRefPubMedGoogle Scholar
  34. Jaenike, J. 1978On optimal oviposition behaviour in phytophagous insectsTheor. Pop. Biol.14350356CrossRefGoogle Scholar
  35. Jaenike, J. 1986Feeding behavior and future fecundity in DrosophilaAm. Nat.127118123CrossRefGoogle Scholar
  36. Jaenike, J. 1989Genetic population structure of Drosophila tripunctata: patterns of variation and covariation of traits affecting resource useEvolution4314671482Google Scholar
  37. Jaenike, J. 1990Host specialization in phytophagous insectsAnnu. Rev. Ecol. Syst.21243273CrossRefGoogle Scholar
  38. James, A.C., Jakubczak, J., Riley, M.P., Jaenike, J. 1988On the causes of monophagy in Drosophila quineriaEvolution42626630Google Scholar
  39. Joshi, A., Thompson, J.N. 1995Trade-offs and the evolution of host specializationEvol. Ecol.98292CrossRefGoogle Scholar
  40. Karowe, D.N. 1990Predicting host range evolution: colonization of Coronilla varia by Colias philodice (Lepidoptera: Pieridae)Evolution4416371647Google Scholar
  41. Keese, M.C. 1998Performance of two monophagous leaf feeding beetles (Coleoptera: Chrysomelidae) on each other’s host plant: do intrinsic factors determine host plant specialization?J. Evol. Biol.11403419CrossRefGoogle Scholar
  42. Lazarević, J., Perić-Mataruga, V., Ivanović, J., Andjelković, M 1998Host plant effects on the genetic variation and correlations in the individual performance of the gypsy mothFunct. Ecol.12141148CrossRefGoogle Scholar
  43. Lazarević, J., Perić-Mataruga, V., Stojković, B., Tucić, N. 2002Adaptation of the gypsy moth to an unsuitable host plantEntomol. Exp. Appl.1027586CrossRefGoogle Scholar
  44. Leather, S.R. 1988Size, reproductive potential and fecundity in insects: things aren’t as simple as they seemOikos51386389Google Scholar
  45. Lu, W.H., Logan, P. 1994Genetic-variation in oviposition between and within populations of Leptinotarsa decemlineata (Coleoptera, Chrysomelidae)Ann. Entomol. Soc. Am.87634640Google Scholar
  46. Lu, W.H., Kennedy, G.G., Gould, F. 1997Genetic variation in larval survival and growth and response to selection by colorado potato beetle (Coleoptera: Chrysomelidae) on tomatoEnviron. Entomol.266775Google Scholar
  47. Mackenzie, A. 1996A trade-off for host plant utilization in the black bean aphid, Aphis fabaeEvolution50155162Google Scholar
  48. Mayhew, P.J. 1997Adaptive patterns of host–plant selection by phytophagous insectsOikos79417428Google Scholar
  49. Mayhew, P.J. 2001Herbivore host choice and optimal bad motherhoodTrends Ecol. Evol.16165167CrossRefPubMedGoogle Scholar
  50. Metha, C., Patel, N. 1995StatXact 3 for Windows. Statistical Software for Exact Nonparametric InferenceCYTEL Software CorporationCambridge, USAGoogle Scholar
  51. Pashley, D.P. 1988Quantitative genetics, development, and physiological adaptation in host strains of fall armywormEvolution4293102Google Scholar
  52. Peppe, G.B., Lomônaco, C. 2003Phenotypic plasticity of Myzus persicae (Hemiptera: Aphididae) raised on Brassica oleracea L. var acephala (kale) and Raphanus sativus L. (radish)Genet. Mol. Biol.26189194CrossRefGoogle Scholar
  53. Rausher, M.D. 1984Tradeoffs in performance on different hosts: evidence from within- and between-site variation in the beetle Deloyala guttataEvolution38582595Google Scholar
  54. Rausher, M.D. 1988Is coevolution dead?Ecology69898901Google Scholar
  55. Roff, D.A. 1997Evolutionary Quantitative GeneticsChapman and HallNew YorkGoogle Scholar
  56. Scheirs, J., Bruyn, L. 2002Integrating optimal foraging and optimal oviposition theory in plant–insect researchOikos96187191CrossRefGoogle Scholar
  57. Scheirs, J., Bruyn, L., Verhagen, R. 2000Optimization of adult performance determines host choice in a grass minerProc. R. Soc. Lond. B.26720652069CrossRefGoogle Scholar
  58. Scheirs, J., Bruyn, L., Verhagen, R. 2001A test of the C3–C4 hypothesis with two grass minersEcology82410421Google Scholar
  59. Scheirs, J., Zoebisch, T.G., Schuster, D.J., Bruyn, L. 2004Optimal foraging shapes host preference of a polyphagous leafminerEcol. Entomol.29375379CrossRefGoogle Scholar
  60. Service, P.M., Rose, M.R. 1985Genetic covariation among life-history components: the effect of novel environmentsEvolution39943945Google Scholar
  61. Thompson, J.N. 1988Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insectsEntomol. Exp. Appl.47314CrossRefGoogle Scholar
  62. Thompson, J.N. 1994The Coevolutionary ProcessUniversity of Chicago PressChicagoGoogle Scholar
  63. Thompson, J.N. 1996Trade-offs in larval performance on normal and novel hostsEntomol. Exp. Appl.80133139CrossRefGoogle Scholar
  64. Thompson, J.N., Wehling, W., Podolsky, R. 1990Evolutionary genetics of host use in swallowtail butterfliesNature344148150CrossRefGoogle Scholar
  65. Tucić, N., Mikuljanac, S., Stojković, O. 1997Genetic variation and covariation among life history traits in populations Acanthoscelides obtectus maintained on different hostsEntomol. Exp. Appl.85247256CrossRefGoogle Scholar
  66. Ueno, H., Fujiyama, N., Katakura, H. 1997Genetic basis for different host use in Epilachna pustulosa, a herbivorous ladybird beetleHeredity78277283CrossRefGoogle Scholar
  67. Ueno, H., Fujiyama, N., Irie, K., Sato, Y., Katakura, H. 1999Genetic basis for established and novel host plant use in a herbivorous ladybird beetleEpilachna vigintioctomaculata. Entomol. Exp. Appl.91245250CrossRefGoogle Scholar
  68. Ueno, H., Fujiyama, N., Yao, I., Sato, Y., Katakura, H. 2003Genetic architecture for normal and novel host-plant use in two local populations of the herbivorous ladybird beetle, Epilachna pustulosaJ. Evol. Biol.16883895CrossRefPubMedGoogle Scholar
  69. Via, S. 1984The quantitative genetics of polyphagy in an insect herbivore. II. Genetic correlations in larval performance within and among plantsEvolution38896905Google Scholar
  70. Via, S. 1990Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systemsAnnu. Rev. Entomol.35421446CrossRefPubMedGoogle Scholar
  71. Via, S. 1991The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clonesEvolution45827852Google Scholar
  72. Via, S. 2001Sympatric speciation in animals: the ugly duckling grows upTrends Ecol. Evol.16381390CrossRefPubMedGoogle Scholar
  73. Via, S., Lande, R. 1985Genotype-environment interactions and the evolution of phenotypic plasticityEvolution39505522Google Scholar
  74. Windig, J.J. 1997The calculation and significance testing of genetic correlations across environmentsJ. Evol. Biol.10853874CrossRefGoogle Scholar
  75. Yano, S., Takabayashi, J., Takafuji, A. 2001Trade-offs in performance on different plants may not restrict the host plant range of the phytophagous mite, Tetranychus urticaeExp. Appl. Acarol.25371381CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
  2. 2.Evolutionary Biology GroupUniversity of AntwerpAntwerpBelgium
  3. 3.Institute of Nature ConservationBrusselsBelgium

Personalised recommendations