Evolutionary Ecology

, Volume 18, Issue 5–6, pp 585–599

Clonal and genetic structure of two Mexican oaks: Quercus eduardii and Quercus potosina (Fagaceae)

  • Cecilia Alfonso-Corrado
  • Rocío Esteban-Jiménez
  • Ricardo Clark-Tapia
  • Daniel Piñero
  • Jorge E. Campos
  • Ana Mendoza
Research Article

Abstract

Quercus eduardii and Q. potosina are dominant oak species in Sierra Fría, Aguascalientes, Mexico. These species have been exploited for multiple purposes since the 16th century. Both species produce clonal offspring through root suckering and acorns through sexual reproduction. To understand clonality for the implementation of the most adequate actions for the conservation of these species, we addressed the following questions: (a) what is the spatial clonal structure of both species? (b) How much clonal and genetic diversity is maintained in these species? Random Amplified Polymorphic DNAs (RAPDs) were used as molecular markers for these analyses. Genets of both species have few ramets and these grow close the parent tree. Autocorrelation analyses at the ramet level showed an aggregated distribution at short distances and a random spatial distribution at larger distances. Also, at the genet level the autocorrelation analyses showed a random distribution. Clonal diversity was high in both species (Q. eduardii: D=0.963, G/N=0.60; Q. potosina: D=0.985, G/N=0.65). Genetic diversity was high within populations (Q. eduardii: He=0.33±0.11; Q. potosina: He=0.35±0.11). Low levels of genetic differentiation among populations were observed (Q. eduardii ϕst=0.19, P < 0.002; Q. potosina ϕst=0.13, P < 0.002). Both species maintain high levels of clonal and genetic diversity, probably due to successful sexual reproduction, which allows gene flow among populations. Conservation and/or reforestation programs must include seed collections and germplasm banks. Due to the small genet size and the high clonal diversity of these species, seeds can be collected in any place in Sierra Fría, Aguascalientes.

Keywords

clonal propagation genetic variation Quercus sexual reproduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, W.G. 1980

    Demography and vegetative reproduction.

    Solbrig, O. eds. Demography and Evolution in Plant Populations BlackwellOxfordEngland89106
    Google Scholar
  2. Alfonso-Corrado, C. 2004Ecología, Manejo y Conservación de Quercus potosina y Q. eduardii en Sierra Fría, Aguascalientes. Tesis Doctoral.Instituto de Ecología. Universidad Nacional Autónoma de México.MéxicoGoogle Scholar
  3. Berg, E.E., Hamrick, J.L. 1994Spatial and genetic structure of two Sandhills oaks: Quercus laevis and Q. margaretta (Fagaceae)Am. J. Bot.81714Google Scholar
  4. Borchert, M.I., Davis, F.W., Michaelsen, J., Oyler, L.D. 1989Interactions of factors affecting seedling recruitment of blue oak (Quercus douglasii) in CaliforniaEcology70389404Google Scholar
  5. Burke, J.M., Bulger, M.R., Wesselingh, R.A., Arnold, M.L. 2000Frequency and spatial patterning of clonal reproduction in louisiana iris hybrid populationsEvolution54137144PubMedGoogle Scholar
  6. Chung, M.Y., Chung, M.G. 2002Fine-scale genetic structure in populations of Quercus variabilis (Fagaceae) from southern KoreaCan. J. Bot.8010341041CrossRefGoogle Scholar
  7. Chung, M.Y., Nason, J., Chung, M.G., Kim, K., Park, C.W., Sun, B.Y., Pak, J.H. 2002Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae)Am. J. Bot.8912291236Google Scholar
  8. Cook, R.E. 1979Asexual reproduction: a further considerationAm. Nat.113769772CrossRefGoogle Scholar
  9. Cook, R.E. 1985

    Growth and development in clonal plant populations.

    Jackson, J.B.C.Buss, L.W.Cook, R.E. eds. Population Biology and Evolution of Clonal Organisms.Yale University PressLondon, England259296
    Google Scholar
  10. Crow, J.F., Aoki, K. 1984Group selection for a polygenic behavioral trait: estimating the degree of population subdivisionProc. Natl. Acad. Sci. USA8160736077PubMedGoogle Scholar
  11. La Cerda, M. 1999Encinos de AguascalientesUniversidad Autónoma de AguascalientesMéxicoGoogle Scholar
  12. Degen B. (2001). SGS: Spatial Genetic Software. Computer program and user’s manual. http:// Kourou.cirad.fr/genetique/software.htmlGoogle Scholar
  13. Deichsel, G., Trampisch, H.J. 1985Clusteranalyse und IskriminanzanalyselGustav FisherStuttgartGoogle Scholar
  14. Dow, B.D., Ashley, M.V. 1998High levels of gene flow in bur oak revealed by paternity analysis using microsatellitesJ. Hered.896270CrossRefGoogle Scholar
  15. Eckert, C.G. 2002The loss of sex in clonal plantsEvol. Ecol.15501520CrossRefGoogle Scholar
  16. Ellstrand, N.C., Roose, M.L. 1987Patterns of genotypic diversity in clonal plant speciesAm. J. Bot.74123131Google Scholar
  17. Eriksson, O. 1989Seedling dynamics and life histories in clonal plantsOikos55231238Google Scholar
  18. Eriksson, O. 1993Dynamics of genets in clonal plantsTrends Ecol. Evol.8313316CrossRefGoogle Scholar
  19. Excoffier, L. 1993WINAMOVA, Version 1.55: A Window Program for the Analyses of Molecular Population Genetic Data Computer Software Distributed by Author Genetics and Biometry LaboratoryUniversity of GenevaGenevaGoogle Scholar
  20. Excoffier, L., Smouse, P.E., Quattro, J.M. 1992Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction dataGenetics131479491PubMedGoogle Scholar
  21. Francis C.Y. and Rong-Cai Y. (1999). Population Genetic Analysis (POPGENE). 1.31: A Window Program for the Analyses of Population Genetic Analysis Computer Software Distributed by Author.Google Scholar
  22. Gómez, J.M., García, D., Zamora, R. 2003Impact of vertebrate acorn and seedling predators on a Mediterranean Quercus pyrenaica forestForest Ecol. Manage.180125134Google Scholar
  23. Hamrick, J.L., Godt, M.J.W. 1989

    Allozyme diversity in plant species

    Brown, A.H.D.Clegg, M.T.Kahler, A.L.Weir, B.S. eds. Plant Population Genetics, Breeding and Genetic Variations in PlantsSunderland, MassachusettsUSA4363
    Google Scholar
  24. Hamrick, J.L., Godt, M.J.W., Sherman-Broyles, S.L. 1992Factors influencing levels of genetic diversity in woody plant speciesNew Forest695124Google Scholar
  25. Hangelbroek, H.H., Ouborg, N.J., Santamaría, L., Schwenk, K. 2002Clonal diversity and structure within a population of the pondweed Potamogeton pectinatus foraged by Bewick’s swansMol. Ecol.1121372150PubMedGoogle Scholar
  26. Hartl, D.L., Clark, A.G. 1989Principles of Population GeneticsSinauer Associates SunderlandMassachusettsGoogle Scholar
  27. Healy, W.M., Lewis, A.M., Boose, E.F. 1999Variation of red oak acorn productionForest Ecol. Manage.116111Google Scholar
  28. Hernández-Reyna A. and Ramírez-García A. (1995). Efecto de tratamientos de manejo del sotobosque en la regeneración del encino, del A. E. F. Piedra Alta, San Luis Potosí. In Universidad Autónoma de Nuevo León. Facultad de Ciencias Forestales (ed.) III Seminario Nacional sobre Utilización de Encinos (Tomo I), Linares, N. L. Nuevo León, México, pp. 239–252Google Scholar
  29. Horak, M.J., Holt, J.S., Ellstrand, N.C. 1987Genetic variation in yellow nutsedge (Cyperus esculentus)Weed Sci.35506512Google Scholar
  30. Huang, H., Dane, F., Kubisiak, T.L. 1998Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild population of the American chestnut (Fagaceae)Am. J. Bot.8510131021Google Scholar
  31. Hutchings, M.J., Wijesinghe, D.K. 1997Patchy habitats, division of labour and growth dividends in clonal plantsTrends Ecol. Evol.12390394Google Scholar
  32. Insworth, E.A.A., Tranel, P.J., Drake, B.G., Long, S.P. 2003The clonal structure of Quercus geminata revealed by conserved microsatellite lociMol. Ecol.12527532PubMedGoogle Scholar
  33. Janzen, D.H. 1971Seed predation by animalsAnnu. Rev. Ecol. Syst.2465492Google Scholar
  34. Jonsson, B.O., Jónsdóttir, I.S., Cronberg, N. 1996Clonal diversity and allozyme variation in populations of the arctic sedge Carex bigelowii (Cyperaceae)J. Ecol.84449459Google Scholar
  35. Kelly, D. 1994The evolutionary ecology of mast seedingTrends Ecol. Evol.9465470Google Scholar
  36. Klimes, L., Klimesova, J., Hendricks, R., Groenendael, J. 1997

    Clonal plant architecture: A comparative analysis of form and function.

    Kroon, H.Groenendael, J. eds. The Ecology and Evolution of Clonal Plants.Backhuys Publishers, LeidenNetherlands129
    Google Scholar
  37. Labworks, (1999) UPV: Ultraviolet-products Ltd. (Version 3.2).Google Scholar
  38. Larsen, D.R. and Johnson, P.S. (1998) Linking the ecology of natural oak regeneration to silviculture. Forest Ecol. Manage 106, 1–7Google Scholar
  39. Le Corre, V., Dumolin-Lapegue, S., Kremer, A. 1997Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: The role of history and geographyMol. Ecol.6519529Google Scholar
  40. Lewontin, R.C. 1972The apportionment of human diversityEvol. Biol.6381398Google Scholar
  41. Li, H.J., Zhang, Z.B. 2003Effect of rodents on acorn dispersal and survival of the Liaodong oak (Quercus liaotungensis Koidz.). Forest EcolManage.176387396Google Scholar
  42. Manos, P.S., Fairbrothers, D.E. 1987Allozyme variation in populations of six northeastern American red oaks (Fagaceae: Quercus subg Erythrobalanus).Syst. Bot.12365373Google Scholar
  43. Mayes, S.G., McGinley, M.A., Werth, C.R. 1998Clonal population structure and genetic variation in sand-shinnery oak, Quercus harvardii (Fagaceae)Am. J. Bot.8516091617Google Scholar
  44. McLellan, A.J., Prati, D., Kaltz, O., Schmid, B. 1997

    Structure and analysis of phenotypic and genetic variation in clonal plants.

    Kroon, H.Groenendael, J. eds. The Ecology and Evolution of Clonal Plants.The Backhuys PublishersLeiden Netherlands.185210
    Google Scholar
  45. Miller M.P. (2000). Tools for Populations Genetic Analyses (TFPGA) 1.3: A Window Program for the Analyses of Allozyme and Molecular Population Genetic Data Computer Software Distributed by Author.Google Scholar
  46. Mogie, M., Hutchings, M.J. 1990

    Phylogeny, ontogeny and clonal growth in vascular plants.

    Groenendael, J.Kroon, H. eds. Clonal Growth in Plants: Regulation and FunctionSPB Academic PublishingThe Hague, Netherlands322
    Google Scholar
  47. Montalvo, A.M., Conard, S.G., Thompson, C.M., Hodgskiss, P.D. 1997Population structure, genetic diversity, and clone formation in Quercus chrysolepis (Fagaceae)Am. J. Bot.8415531564Google Scholar
  48. Negi, A.S., Negi, G.C.S., Singh, S.P. 1996Establishment and growth of Quercus floribunda seedlings after a mast yearJ. Veg. Sci.7559564Google Scholar
  49. Pappert, R.A., Hamrick, J.L., Donovan, L.A. 2000Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United StatesAm. J. Bot.8712401245PubMedGoogle Scholar
  50. Peterson, C.J., Jones, R.H. 1997

    Clonality in woody plant: A review and comparison with clonal herbs.

    Kroon, H.Groenendael, J. eds. The Ecology and Evolution of Clonal Plants.The Backhuys PublishersLeiden, Netherlands263289
    Google Scholar
  51. Pleasants, J.M., Wendel, J.F. 1989Genetic diversity in a clonal narrow endemic, Erythronium propullans, and its wide spread progenitor, Erythronium albidiumAm. J. Bot.7611361151Google Scholar
  52. Pielou, E.C. 1969An Introduction to Mathematical EcologyWiley-InterscienceNew YorkGoogle Scholar
  53. Richards, A.J. 1986Plant Breeding SystemsGeorge Allen and UnwinLondonGoogle Scholar
  54. Rogers, R., Johnson, P.S. 1998Approaches to modeling natural regeneration in oak–dominated forestForest Ecol. Manage1064554Google Scholar
  55. Schnabel, A., Hamrick, J.L. 1990Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambellii (Fagaceae)Syst. Bot.15240251Google Scholar
  56. SEDESO,  1993Estudio para la declaratoria de la Sierra Fría como área natural protegida (Volume No 2)SEDESOMéxicoGoogle Scholar
  57. Slatkin, M. (1994). Gene flow and population structure. In L. Real (ed.) Ecological Genetics, Princeton University Press, pp. 3–17.Google Scholar
  58. Soane, I.D., Watkinson, A.R. 1979Clonal variation in populations of Ranunculus repensNew Phytol.82557573Google Scholar
  59. Streiff, R., Labbe, T., Bacilieri, R., Steinkellner, H., Glössl, J., Kremer, A. 1998Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellitesMol. Ecol.7317328Google Scholar
  60. Thadani, R., Ashton, P.M.S. 1995Regeneration of banj oak (Quercus leucotrichophora A.␣Camus) in the Central HimalayaForest Ecol. Manage.78217224Google Scholar
  61. Vetaas, O.R. 2000The effect of environmental factors on the regeneration of Quercus semecarpifolia Sm. in Central Himalaya, NepalPlant Ecol.146137144Google Scholar
  62. Verburg, R., Maas, J., During, H.J. 2000Clonal diversity in differently-aged populations of the pseudo-annual clonal plant Circaea lutetiana LPlant Biol.2646652Google Scholar
  63. Watkinson, A.R., Powell, J.C. 1993Seedling recruitment and the maintenance of clonal diversity in plant populations – a computer simulation of Ranunculus repensJ. Ecol.81707717Google Scholar
  64. Wright, S. 1951The genetic structure of populationsAnn. Eugen.15323354Google Scholar
  65. Zavala, Ch.F., García, M.E. 1997Plántulas y rebrotes en la regeneración de encinos en la Sierra de Pachuca, HidalgoAgrociencia31323329Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Cecilia Alfonso-Corrado
    • 1
  • Rocío Esteban-Jiménez
    • 1
  • Ricardo Clark-Tapia
    • 2
  • Daniel Piñero
    • 3
  • Jorge E. Campos
    • 4
  • Ana Mendoza
    • 1
  1. 1.Instituto de Ecología., Departamento de Ecología FuncionalUNAM.Delegación Coyoacán.México
  2. 2.Instituto de Ecología., Departamento de Ecología de la Biodiversidad. Estación Regional del Noroeste.UNAM.SonoraMéxico
  3. 3.Instituto de Ecología., Departamento de Ecología EvolutivaUNAMDelegación CoyoacánMéxico
  4. 4.Facultad de Estudios Superiores Iztacala, Unidad de Biotecnología y Prototipos.UNAMTlalnepantla, Edo. deMéxico

Personalised recommendations