Advertisement

Evolutionary Ecology

, Volume 18, Issue 4, pp 323–341 | Cite as

Dry environments promote the establishment of females in monomorphic populations of Wurmbea biglandulosa (Colchicaceae)

  • Glenda VaughtonEmail author
  • Mike Ramsey
Research article

Abstract

In flowering plants, the evolution of dimorphic breeding systems from monomorphic ancestors can be associated with dry environments. One hypothesis to explain this pattern is that seed fertility of hermaphrodites decreases more than seed fertility of females under dry conditions, so that females have greater relative fitness. This could occur if seed production of hermaphrodites is more resource-limited than that of females, or shifts in pollination increase levels of selfing and inbreeding depression in hermaphrodites. Here we assess the role of dry environments in promoting a female fitness advantage in Wurmbea biglandulosa by focusing on monomorphic and dimorphic populations that occur along a longitudinal gradient of decreasing rainfall. Dimorphic populations occurred in sites with higher temperatures, lower rainfall and lower soil moisture. Overall, females had greater seed fertility than did hermaphrodites from monomorphic populations, which in turn had greater seed fertility than hermaphrodites from dimorphic populations. Ovuliferous flower and ovule production by the three gender morphs and seed fertility of females and hermaphrodites in monomorphic populations did not vary with soil moisture. By contrast, seed fertility of hermaphrodites in dimorphic populations was positively related to soil moisture. Accordingly, female frequency was higher in those sites where hermaphrodites produced relatively fewer seeds. Taken together our results indicate that dry environments promote the establishment of females by decreasing the relative seed fitness of hermaphrodites. Moreover, because seed fertility of hermaphrodites in monomorphic populations did not vary with soil moisture, resource limitation of female function may play only a minor role in the establishment of females. Other factors such as shifts in pollination and mating patterns of hermaphrodites could be involved. Key words:breeding system evolution, environmental stress, gender dimorphism, gynodioecy, sex ratio variation

Keywords

Soil Moisture Inbreeding Depression Mating Pattern Lower Soil Moisture Fitness Advantage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, C., Herrera, C.M. 2001Neither vegetative nor reproductive advantages account for high frequency of male-steriles in southern Spanish gynodioecious Daphne laureola (Thymelaeaceae)Am. J. Bot.8810161024Google Scholar
  2. Ashman, T.-L. 1999Determinants of sex allocation in gynodioecious wild strawberry: Implications for the evolution of dioecy and sexual dimorphismJ. Evol. Biol.12648661Google Scholar
  3. Ashman, T.-L., Pacyna, J., Diefenderfer, C., Leftwich, T. 2001Size-dependent sex allocation in a gynodioecious wild strawberry: The effects of sex morph and inflorescence architectureInt. J. Plant Sci.162327334Google Scholar
  4. Asikainen, E., Mutikainen, P. 2003Female frequency and the relative fitness of females and hermaphrodites in gynodioecious Geranium sylvaticum (Geraniaceae).Am. J. Bot.90226234Google Scholar
  5. Barrett, S.C.H. 1992Gender variation and evolution of dioecy in Wurmbea dioica (Liliaceae)J. Evol. Biol.5423444Google Scholar
  6. Barrett, S.C.H., Case, A.L., Peters, G.B. 1999Gender modification and resource allocation in subdioecious Wurmbea dioica (Colchicaceae)J. Ecol.87123137Google Scholar
  7. Case, A.L., Barrett, S.C.H. 2001Ecological differentiation of combined and separate sexes of Wurmbea dioica (Colchicaceae)Ecology8226012616Google Scholar
  8. Case, A.L., Barrett, S.C.H. 2004Environmental stress and the evolution of dioecy: Wurmbea dioica (Colchicaceae) in Western Australia.Evol. Ecol.18145164Google Scholar
  9. Case, A.L., Barrett, S.C.H. 2004Floral biology of gender monomorphism and dimorphism in Wurmbea dioica (Colchicaceae) in Western AustraliaInt. J. Plant Sci.165289301Google Scholar
  10. Charlesworth, B., Charlesworth, D. 1978A model for the evolution of dioecy and gynodioecyAm. Nat.112975997Google Scholar
  11. Charlesworth, D. 1981A further study of the problem of the maintenance of females in gynodioecious speciesHeredity462739Google Scholar
  12. Charlesworth, D. 1999Theories of the evolution of dioecyM.A., GeberT.E., DawsonL.F., Delph eds. Gender and sexual dimorphism in flowering plants.SpringerBerlin3360Google Scholar
  13. Costich, D.E. 1995Gender specialization across a climatic gradient: Experimental comparison of monoecious and dioecious EcballiumEcology7610361050Google Scholar
  14. Delannay, X., Gouyon, P.-H., Valdeyron, G. 1981Mathematical study of the evolution of gynodioecy with cytoplasmic inheritance under the effect of nuclear restorer geneGenetics99169181Google Scholar
  15. Delph, L.F. 1990aSex-ratio variation in the gynodioecious shrub Hebe strictissima (Scrophulariaceae)Evolution44134142Google Scholar
  16. Delph, L.F. 1990bThe evolution of gender dimorphism in New Zealand Hebe (Scrophulariaceae) speciesEvol. Trends Plants48597Google Scholar
  17. Delph, L.F., Lloyd, D.G. 1996Inbreeding depression in the gynodioecious shrub Hebe subalpina (Scrophulariaceae)N. Z. J. Bot.34241247Google Scholar
  18. Delph, L.F., Carroll, S.B. 2001Factors affecting relative seed fitness and female frequency in a gynodioecious species, Silene acaulisEvol. Ecol. Res.3487505Google Scholar
  19. Delph, L.F. 2003Sexual dimorphism in gender plasticity and its consequences for breeding system evolutionEvol. Devel.53439Google Scholar
  20. Fisher, J., Lindenmayer, D.B., Nix, H.A., Stein, J.L., Stein, J.A. 2001Climate and animal distribution a climatic analysis of the Australian marsupial Trichosurus caninusJ. Biogeogr28293304Google Scholar
  21. Frank, S.A. 1989The evolutionary dynamics of cytoplasmic male sterilityAm. Nat.133498514Google Scholar
  22. Hart, J.A. 1985Peripheral isolation and the origin of diversity in Lepechinia sect. Parviflorae (Lamiaceae)Syst. Bot.10134146Google Scholar
  23. Houlder D., Hutchinson M., Nix H. and McMahon J. (2001). ANUCLIM 5.1 User’s Guide. CRES ANUGoogle Scholar
  24. Lewis, D. 1941Male sterility in natural populations of hermaphroditic plantsNew Phytol.405663Google Scholar
  25. Lindenmayer, D.B., Nix, H.A., McMahon, J.P., Hutchinson, M.F., Tanton, M.T. 1991The conservation of Leadbeater’s possum, Gymnobelideus leadbeateri (McCoy): A case study of the use of bioclimatic modellingJ. Biogeogr.18371383Google Scholar
  26. Lloyd, D.G. 1976The transmission of genes via pollen and ovules in gynodioecious angiospermsTheor. Pop. Biol.9299316Google Scholar
  27. Lloyd, D.G. 1980Sexual strategies in plants. III. A quantitative method for describing the gender of plantsN. Z. J. Bot.18103108Google Scholar
  28. Lloyd, D.G., Bawa, K.S. 1980Modification of the gender of seed plants in varying conditionsEvol. Biol.17255338Google Scholar
  29. Macfarlane, T.D. 1980A revision of Wurmbea (Liliaceae) in AustraliaBrunonia3145208Google Scholar
  30. McCauley, D.E., Taylor, D.R. 1997Local population structure and sex ratio: Evolution in gynodioecious plantsAm. Nat.150406419Google Scholar
  31. Ramsey, M., Vaughton, G. 2001Sex expression and sexual dimorphism in subdioecious Wurmbea dioica (Colchicaceae)Int. J. Plant Sci.162589597Google Scholar
  32. Ramsey, M., Vaughton, G. 2002Maintenance of gynodioecy in Wurmbea biglandulosa (Colchicaceae): Gender differences in seed production and progeny successPlant Syst Evol.232189200Google Scholar
  33. Rice, W.R. 1989Analyzing tables of statistical testsEvolution43223225Google Scholar
  34. Sakai, A.K., Weller, S.G., Chen, M.L., Chou, S.Y., Tasanont, K. 1997Evolution of gynodioecy and the maintenance of females: The role of inbreeding depression, outcrossing rates, and resource allocation in Schiedea adamantis (Caryophyllaceae)Evolution51724736Google Scholar
  35. Sakai, A.K., Weller, S.G. 1999Gender and sexual dimorphism in flowering plants: A review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approachesM.A., GeberT.E., DawsonL.F., Delph eds. Gender and sexual dimorphism in flowering plantsSpringerBerlin131Google Scholar
  36. SAS Institute2002JMP user’s guideSAS Institute CaryNCGoogle Scholar
  37. Schultz, S.T., Ganders, F.R. 1996Evolution of unisexuality in the Hawaiian flora: A test of microevolutionary theoryEvolution50842855Google Scholar
  38. Vaughton, G., Ramsey, M. 2002Evidence of gynodioecy and sex ratio variation in Wurmbea biglandulosa (Colchicaceae)Plant Syst. Evol.232167179Google Scholar
  39. Webb, C.J. 1979Breeding systems and the evolution of dioecy in New Zealand apioid UmbelliferaeEvolution33662672Google Scholar
  40. Weller, S.G., Wagner, W.L., Sakai, A.K. 1995A phylogenetic analysis of Scheidea and Alsinidendron (Caryophyllaceae: Alsinoideae): Implications for the evolution of breeding systemsSyst. Bot.20315337Google Scholar
  41. Wolfe, L., Shmida, A. 1997The ecology of sex expression in a gynodioecious Israeli desert shrub (Ochradenus baccatus)Ecology78101110Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.BotanyUniversity of New EnglandArmidaleAustralia

Personalised recommendations