Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Selection strategies for increasing the yield of high nutritional value leaf mass in Urochloa hybrids

  • 26 Accesses

Abstract

Experimental genotype selection in a forage crop cultivar development program is complex because the ultimate aim is increase performance and sustainability in animal production. The objectives of this study were (1) to identify traits with greater direct and indirect effects on yield of high nutritional value leaf mass (NLM) in Urochloa sp. hybrids and (2) to assess indirect gain from selection for these traits with greater effects through selection indexes and by genotype by yield*trait (GYT) biplot analysis using NLM as a basic variable. We evaluated 96 interspecific hybrids, from a gene pool among Urochloa ruziziensis, Urochloa brizantha and Urochloa decumbens species, in an experiment laid out in a randomized complete block design. A series of agronomic and nutritional value traits were measured. Path analysis and GYT were performed using NLM as the basic variable, and different strategies using selection indexes were adopted. The leaf dry matter and field green weight (FGW) traits exhibited greater direct effects on NLM. All selection strategies proved to be effective in obtaining gains in the NLM variable. GYT analysis and the selection index with weights corresponding to the relative direct effects to each trait on the NLM were the strategies that resulted in a greater correlated response for NLM. Indirect selection for NLM via FGW or the index with the FGW and regrowth capacity traits proved to be viable strategies for selection of Urochloa genotypes in the initial stages of the breeding cycles due to their practicality and lower requirement regarding traits to be measured.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alves BM, Cargnelutti Filho A (2017) Genotypic correlation and path analysis in early and super-early maize genotypes. Genet Mol Res 16:2. https://doi.org/10.4238/gmr16029671

  2. Andrade VT, Gonçalves FMA, Nunes JAR, Botelho CE (2016) Statistical modeling implications for coffee progenies selection. Euphytica 207:177–189. https://doi.org/10.1007/s10681-015-1561-6

  3. AOAC (Association of Official Analytical Chemists) (1990) Official methods of analysis. AOAC, Washington

  4. Borges V, Souza Sobrinho F, Lédo FJS, Kopp MM (2011) Associação entre caracteres e análise de trilha na seleção de progênies de meios-irmãos de Brachiaria ruziziensis. Rev Ceres 58:765–772. https://doi.org/10.1590/S0034-737X2011000600013

  5. Butler D (2009) Asreml: asreml() fits the linear mixed model. R package version 3.0. www.vsni.co.uk

  6. Carvalho SP, Cruz CD (1996) Diagnosis of multicollinearity: assessment of the condition of correlation matrices used in genetic studies. Braz J Genet 19:479–484

  7. Cruz CD (2013) GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Sci 35:271–276. https://doi.org/10.4025/actasciagron.v35i3.21251

  8. Cruz CD, Regazzi AJ, Carneiro PCS (2012) Modelos biométricos aplicados ao melhoramento genético. Editora UFV, Viçosa (Version 1)

  9. Cruz CD, Carneiro PCS, Regazzi AJ (2014) Modelos biométricos aplicados ao melhoramento genético. Editora UFV, Viçosa (Version 2)

  10. Dias KOG, Gezan SA, Guimarães CT, Parentoni SN, Guimarães PEO, Carneiro NP, Portugal AF, Bastos EA, Cardoso MJ, Anoni CO, Magalhães JV, Souza JC, Guimarães LJM, Pastina MM (2018) Estimating genotype x environment interaction for and genetic correlations among drought tolerance traits in maize via factor analytic multiplicative mixed models. Crop Sci 58:72–83. https://doi.org/10.2135/cropsci2016.07.0566

  11. Euclides VPB, Euclides Filho K (1998) Uso de animais na avaliação de forrageiras. EMBRAPA-CNPGC, Campo Grande

  12. Figueiredo UJ, Nunes JAR, Valle CB (2012) Estimation of genetic parameters and selection of Brachiaria humidicola progenies using a selection index. Crop Breed Appl Biotechnol 12:237–244. https://doi.org/10.1590/S1984-70332012000400002

  13. Frutos E, Galindo MP, Leiva V (2014) An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch Environ Res Risk Assess 28:1629–1641

  14. Jank L, Barrios SCL, Valle CB, Simeão RM, Alves AF (2014) The value of improved pastures to Brazilian beef production. Crop Pasture Sci 65:1132–1137. https://doi.org/10.1071/CP13319

  15. Kmail Z, Milander J, Jukić Z, Mason S (2017) Path analysis comparison of plant population and hybrid maturity for maize primary and secondary yield components. Agric Conspec Sci 81:197–204

  16. Machado BQV, Nogueira APO, Hamawaki OT, Rezende GF, Jorge GL, Silveira IC, Medeiros LA, Hamawaki RL, Hamawaki CDL (2017) Phenotypic and genotypic correlations between soybean agronomic traits and path analysis. Genet Mol Res 16:2. https://doi.org/10.4238/gmr16029696

  17. Marten GC, Shenk JS, Barton II FE (1989) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. U.S. Department of Agriculture, Agriculture Handbook No. 643 (revised with supplements)

  18. Mateus RG, Barrios SCL, do Valle CB, Valério JR, Torres FZV, Martins LB, Amaral PNC (2015) Genetic parameters and selection of Brachiaria decumbens hybrids for agronomic traits and resistance to spittlebugs. Crop Breed Appl Biotechnol 15:227–234. https://doi.org/10.1590/1984-70332015v15n4a39

  19. Matias FI, Barrios SCL, Valle CB, Mateus RG, Martins LB, Moro GV (2016) Estimate of genetic parameters in Brachiaria decumbens hybrids. Crop Breed Appl Biotechnol 16:115–122. https://doi.org/10.1590/1984-70332016v16n2a18

  20. Matias FI, Barrios SCL, Bearari LM, Meireles KGX, Mateus RG, Amaral PNC, Alves GF, do Valle CB, Fritsche-Neto R (2018) Contribution of additive and dominance effects on agronomical and nutritional traits, and multivariate selection on Urochloa spp. Hybrids. Crop Sci 58:1–15. https://doi.org/10.2135/cropsci2018.04.0261

  21. Mendiburu FD (2014) Agricolae: statistical procedures for agri-cultural research. R Package Version 1.1-6. R Found. Stat. Comput., Vienna

  22. Miles JW (2007) Apomixis for cultivar development in tropi-cal forage grasses. Crop Sci. 47:S238–S249. https://doi.org/10.2135/cropsci2007.04.0016ipbs

  23. Montgomery DC, Peck EA (1981) Introduction to linear regression analysis. Wiley, New York

  24. Pandolfi Filho AD, do Valle CB, Barrios SCL, Alves GF, Deminicis BB (2016) Avaliação de genitoras sexuais de Bra-chiaria spp. na época de seca. Arch Zootec 65:213–219

  25. Resende MDV, Duarte JB (2007) Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui Agropecu Trop 37:182–194

  26. Schmidt P, Hartung J, Bennewitz J, Piepho H (2019) Heritability in plant breeding on a genotype-difference basis. Genetics 212:991–1008. https://doi.org/10.1534/genetics.119.302134

  27. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

  28. Simeão RM, Silva A, Valle CB, Resende MD, Medeiros S (2016) Genetic evaluation and selection index in tetraploid Brachiaria ruziziensis. Plant Breed 135:246–253. https://doi.org/10.1111/pbr.12353

  29. Smith AB, Stringer JK, Wei X, Cullis BR (2007) Varietal selection for perennial crops where data relate to multiple harvests from a series of field trials. Euphytica 157:253–266. https://doi.org/10.1007/s10681-007-9418-2

  30. Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russell JB (1992) A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 70:3562–3577

  31. Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Br Grassl Soc 18:104–111

  32. Torres FE, do Valle CB, Lempp B, Teodoro PE, Rigon JPG, Ribeiro LP, Correa CCG, Luz RAA Jr. (2015) Estimativa da divergência entre ecótipos de braquiária baseada em descritores quantitativos e qualitativos. Ciência Rural 45:485–491. https://doi.org/10.1590/0103-8478cr20140537

  33. Torres FE, do Valle CB, Lempp B, Teodoro PE, Santos A, Ribeiro LP (2016) Contribuição dos caracteres de qualidade da forragem ao teor de proteína bruta em Urochloa brizantha. Pesqui Agropecu Bras 51:284–287. https://doi.org/10.1590/S0100-204X2016000300011

  34. Valle CB, Simioni C, Resende RMS, Jank L (2008) Melhoramento genético de Brachiaria. In: Resende RMS, Valle CB, Jank L (eds) Melhoramento de Forrageiras Tropicais. Campo Grande, Embrapa Gado de Corte, pp 13–53

  35. Van Soest PJ, Robertson JB, Lewis BA (1991) Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J Dairy Sci 74:3583–3597

  36. Weiss NA (2016) wBoot: bootstrap methods. R package version 1.0.3. https://CRAN.R-project.org/package=wBoot

  37. Wilson JR, Akint DE, McLeod MN, Minson DJ (1989) Particle size reduction of the leaves of a tropical and a temperate grass by cattle. II. Relation of anatomical structure to the process of leaf breakdown through chewing and digestion. Grass Forage Sci 44:65–75. https://doi.org/10.1111/j.1365-2494.1989.tb01911.x

  38. Worthington ML, Miles JW (2015) Reciprocal full-sib recurrent selection and tools for accelerating genetic gain in apomictic Brachiaria. In: Budak H, Spangenberg G (eds) Molecular breeding of forage and turf. The proceedings of the 8th international symposium on the molecular breeding of forage and turf. Springer, Cham, Switzerland. pp 19–30. https://doi.org/10.1007/978-3-319-08714-6_3

  39. Wright S (1921) Correlation and causation. J Agric Res 20:557–585

  40. Yan W, Frégeau-Reid J (2018) Genotype by yield*trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Nature 8:8242. https://doi.org/10.1038/s41598-018-26688-8

Download references

Acknowledgements

We are thankfull to the Graduate Program in Genetics and Plant Breeding of the Universidade Federal de Lavras (UFLA) for all academic support during my Ph.D. degree course, to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for finance in part this study, to Empresa Brasileira de Pesquisa Agropecuária (Embrapa) and Associação para o Fomento à Pesquisa de Melhoramento de Sementes Forrageiras (Unipasto) for availability of infrastructure and financial support, and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarship granted.

Author information

Correspondence to Beatriz Tomé Gouveia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gouveia, B.T., Barrios, S.C.L., do Valle, C.B. et al. Selection strategies for increasing the yield of high nutritional value leaf mass in Urochloa hybrids. Euphytica 216, 38 (2020). https://doi.org/10.1007/s10681-020-2574-3

Download citation

Keywords

  • Urochloa
  • Genetic correlation
  • Indirect selection
  • Path analysis
  • Index selection
  • Biplot analysis