, 216:19 | Cite as

Marker-assisted selection in Gossypium spp. for Meloidogyne incognita resistance and histopathological characterization of a near immune line

  • C. M. L. LopesEmail author
  • N. D. Suassuna
  • J. E. Cares
  • A. C. M. M. Gomes
  • F. J. Perina
  • G. F. Nascimento
  • J. S. F. Mendonça
  • A. W. Moita
  • R. M. D. G. Carneiro


The root-knot nematode, Meloidogyne incognita, is one of the most important parasites that cause economic losses in the cotton crop. Plant genetic resistance is the most desirable strategy to control this pathogen. Sources of resistance in cotton have been known for several years but only a few resistant commercial varieties have been released. Cotton breeding lines were developed using marker-assisted selection in early generation plants to introgress root-knot resistance genes from two different sources: M-315 or CIR1348. Phenotyping was carried out in greenhouse conditions to validate the molecular markers associated with the resistance genes in the breeding lines and confirmed by genotyping. The markers targeting QTLs from M-315 resistance source were highly efficient in the selection of plants resistant to M. incognita, with all plants expressing a reproduction factor inferior to 0.08. CIR1348 resistance source markers were also very efficient in selecting resistance; however, some segregation events revealed the need for fine mapping of the resistance QTLs. To clarify the resistance mechanisms, present in the germplasm derived from the M-315 resistance source, the resistant line CNPA 17-26 B2RF (triple cross [BRS 368RF × M-315] × [BRS 430B2RF]) was chosen for histopathological characterization of plant-nematode interaction and compared with the susceptible FiberMax 966 (FM 966). The second-stage juveniles (J2) penetrated equally in both genotypes. In the histopathological study, a strong blue fluorescence was visualized in the tissues around the nematode (hypersensitivity reaction, HR), mainly at the beginning (from 2 to 6 DAI) in the cortex and central cylinder of the resistant plant, indicating accumulation of phenolic compounds in the roots. At 9 DAI, giant cells in the early stage of subdivision next to nematodes were observed in the central cylinder of the resistant plant, and phenolic compounds were also shown around the nematode. At 12–40 DAI these initial cells were completely degraded with the presence of phenolics involving the nematodes and initial giant cells. No fully developed giant cells or mature females were observed, only fourth-stage juveniles (J4s), and males were frequently visualized at 34 DAI. This resistance mechanism characterizes near-immunity, and so no enlarged females and no egg production were observed. In susceptible control, it was possible to visualize feeding sites well developed from 6 to 30 DAI. Females reached maturity at 26 DAI, and eggs were observed at 30 DAI. Our results suggested that the resistance (near-immunity) of the line CNPA 17-26 B2RF was related to early (2–12 DAI) defense responses that totally prevented nematode reproduction.


Gossypium hirsutum G. barbadense Hypersensitive response Resistance genes Root-knot nematode 



  1. ABRAPA (2017) Associação Brasileira dos Produtores de Algodão. Accessed 23 Sept 2018Google Scholar
  2. Anwar SA, McKenry MV (2002) Penetration and development of Meloidogyne arenaria on two new grape rootstocks. J Nematol 34:143–145PubMedPubMedCentralGoogle Scholar
  3. Barroso PAV, Suassuna ND, Pedrosa MB, Morello CL, Filho JLS, Lamas FM, Bogiani JC (2017) BRS 368RF: A glyphosate tolerant, midseason upland cotton cultivar for Northeast and North Brazilian cerrado. Crop Breed Appl Biotechnol 17(4):399–402CrossRefGoogle Scholar
  4. Bendezu IF, Starr JL (2003) Mechanism of resistance to Meloidogyne arenaria in the peanut cultivar COAN. J Nematol 35:115–118PubMedPubMedCentralGoogle Scholar
  5. Byrd DW, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol 15:142–143Google Scholar
  6. Creech RG, Jenkins JN, Tang B, Lawrence GW, McCarty JC (1995) Cotton resistance to root-knot nematode: I. Penetration and reproduction. Crop Sci 35:365–368CrossRefGoogle Scholar
  7. de Carvalho LP, Farias FJC, Rodrigues JIS, Suassuna ND, Teodoro PE (2017) Genetic diversity among exotic cotton accessions as for qualitative and quantitative traits. Genet Mol Res. CrossRefPubMedGoogle Scholar
  8. Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120:943–953PubMedCrossRefGoogle Scholar
  9. Fassuliotis G (1970) Resistance of Cucumis spp. to the root-knot nematode, Meloidogyne incognita acrita. J Nematol 2:174–178PubMedPubMedCentralGoogle Scholar
  10. Freitas VM, Correia VR, Motta FC, Sousa MG, Gomes ACMM, Carneiro MDG, Silva DB, Mattos JK, Nicole M, Carneiro RMDG (2014) Resistant accessions of wild Psidium spp. to Meloidogyne enterolobii and histological characterization of resistance. Plant Pathol 63:738–746CrossRefGoogle Scholar
  11. Galbieri R, Asmus GL (2016) Principais espécies de nematoides do algodoeiro no Brasil. In: Galbieri R, Belot JL (eds) Nematoides fitoparasitas do algodoeiro nos cerrados brasileiros: biologia e medidas de controle. IMAmt, Cuiabá, pp 11–36Google Scholar
  12. Galbieri R, Belot JL, Vilela PA, Cia E (2019) Avaliação da resistência e da tolerância de cultivares de algodoeiro ao nematoide-das-galhas. Instituto Matogrossense do Algodão 42:1–8Google Scholar
  13. Gomes GM, Moretzsohn MC, Da Silva EH, Furlanetto C, Silva JGP, Lacape JM, Barroso PAV, Carneiro RMDG, Giband M (2016) Mapping of QTLs identified in a novel source of resistance to the root-knot nematode (Meloidogyne incognita race 3) in cotton (Gossypium barbadense L.). In: ICAC (ed) World cotton research conference, Goiânia, Brazil 2016, pp 163–164Google Scholar
  14. Gutiérrez OA, Stelly DM, Saha S, Jenkins JN, McCarty JC, Raska DA, Scheffler BE (2010) SSR markers closely associated with genes for resistance to root- knot nematode on chromosomes 11 and 14 of Upland cotton. Theor Appl Genet 121:1323–1337PubMedCrossRefGoogle Scholar
  15. Hartman KM, Sasser JN (1985) Identification of Meloidogyne species on the basis of differential host test and perineal pattern morphology. In: Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, vol II. Methodology. North Carolina State University Graphics, Raleigh, pp 69–77Google Scholar
  16. He Y, Kumar P, Shen X, Davis RF, Van Becelaere G, May OL, Nichols RL, Chee PW (2014) Re-evaluation of the inheritance for root-knot nematode resistance in the Upland cotton germplasm line M-120 RNR revealed two epistatic QTLs conferring resistance. Theor Appl Genet 127:1343–1351PubMedCrossRefGoogle Scholar
  17. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028Google Scholar
  18. Jenkins JN (2003) Cotton. In: OECD (ed) Traditional crop breeding practices: an historical review to serve as a baseline for assessing the role of modern biotechnology. Organization for Economic Co-Operation and Development (OECD), Paris, pp 61–70Google Scholar
  19. Jenkins JN, Creech RG, Tang B, Lawrence GW, McCarty JC (1995) Cotton resistance to root-knot nematode: II. Post-penetration development. Crop Sci 35:369–373CrossRefGoogle Scholar
  20. Jenkins JN, McCarty JC, Wubben MJ, Hayes R, Gutierrez OA, Callahan F, Deng D (2012) SSR markers for marker assisted selection of root-knot nematode (Meloidogyne incognita) resistant plants in cotton (Gossypium hirsutum L). Euphytica 183:49–54CrossRefGoogle Scholar
  21. Lima EA, Furlanetto C, Nicole M, Gomes ACMM, Almeida MRA, Jorge-Junior A, Correa VR, Salgado SML, Ferrão MA, Carneiro RMDG (2015) The multi-resistant reaction of drought-tolerant coffee Conilon clone 14 to Meloidogyne spp. and late hypersensitive-like response in Coffea canephora. Phytopathology 105:805–814PubMedCrossRefPubMedCentralGoogle Scholar
  22. Lopes CML, Cares JE, Perina FJ, Nascimento GF, Mendonça JSF, Moita AW, Castagnone-Sereno P, Carneiro RMDG (2019) Diversity of Meloidogyne incognita populations from cotton and aggressiveness to Gossypium spp. accessions. Plant Pathol 68:816–824CrossRefGoogle Scholar
  23. McCarty JC, Jenkins JN, Wubben MJ, Hayes RW, Callahan FE, Deng D (2017) Registration of six germplasm lines of cotton with resistance to the root-knot and reniform nematodes. J Plant Regist 11:168–171CrossRefGoogle Scholar
  24. McPherson MG, Jenkins JN, Watson CE, McCarty JC (2004) Inheritance of root-knot nematode resistance in M-315 RNR and M-78 RNR cotton. J Cotton Sci 8:154–161Google Scholar
  25. Menezes IPP, Gaiotto FA, Suassuna ND, Hoffmann LV, Barroso PAV (2014) Susceptibility of Gossypium mustelinum populations to the main cotton diseases in Brazil. J Agric Sci 6:39–47Google Scholar
  26. Mota FC, Alves GCS, Giband M, Gomes ACMM, Sousa FR, Mattos VS, Barbosa VHS, Barroso PAV, Michel N, Peixoto JR, Rocha MR, Carneiro RMDG (2012) New sources of resistance to Meloidogyne incognita race 3 in wild cotton accessions and histological characterization of the defense mechanisms. Plant Pathol 62:1173–1183CrossRefGoogle Scholar
  27. Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389CrossRefGoogle Scholar
  28. Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C (2005) Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology 95:158–165PubMedCrossRefGoogle Scholar
  29. Pofu KM, Mashela PW (2011) Using relative penetration and maleness indices in Meloidogyne incognita to establish resistance type in Cucumis myriocarpus. Afr J Biotechnol 10:390–393Google Scholar
  30. Proite K, Carneiro R, Falcão R, Gomes A, Leal-Bertioli S, Guimarães P, Bertioli D (2008) Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathol 57:974–980CrossRefGoogle Scholar
  31. Robinson AF (2008) Nematode management in cotton. In: Ciancio A, Mukerji KG (eds) Integrated management of biocontrol of vegetable and grain crops nematodes. Springer, New York, pp 149–182Google Scholar
  32. Shen X, Van Becelaere G, Kumar P, Davis RF, Chee PW (2006) QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor Appl Genet 113:1539–1549PubMedCrossRefGoogle Scholar
  33. Shen X, He Y, Lubbers EL, Davis RF, Nichols RL, Chee PW (2010) Fine mapping QMi-C11 a major QTL controlling root-knot nematodes resistance in Upland cotton. Theor Appl Genet 121:1623–1631PubMedCrossRefGoogle Scholar
  34. Shepherd RL (1974) Transgressive segregation for root-knot nematode resistance in cotton. Crop Sci 14:872–875CrossRefGoogle Scholar
  35. Shepherd RL (1982) Registration of 3 germplasm lines of cotton. Crop Sci 22(3):692Google Scholar
  36. Shepherd RL, McCarty JC, Jenkins JN, Parrott WL (1996) Registration of nine cotton germplasm lines resistant to root-knot nematode. Crop Sci 36(3):820. CrossRefGoogle Scholar
  37. Silva EH (2014) Variabilidade genética e fisiológica de populações de Meloidogyne incognita e identificação de QTLs de uma nova fonte de resistência do algodoeiro (Gossypium spp.) a esse nematoide. Universidade de Brasília, BrasíliaGoogle Scholar
  38. Silva EH, Mattos VS, Furlanetto C, Giband M, Barroso PAV, Moita AW, Jorge-Junior A, Correa VR, Castagnone-Sereno P, Carneiro RMDG (2014) Genetic variability and virulence of Meloidogyne incognita populations from Brazil to resistant cotton genotypes. Eur J Plant Pathol 139:195–204CrossRefGoogle Scholar
  39. Silva MBD, Davis RF, Kumar P, Nichols RL, Chee PW (2019) Resistance QTLs qMi-C11 and qMi-C14 in cotton have different effects on the development of Meloidogyne incognita, the southern root-knot nematode. Plant Dis 103:853–858PubMedCrossRefGoogle Scholar
  40. Silva Neto SP, Pereira AF, Morello CL, Suassuna ND (2016) Melhoramento clássico e biotecnologia visando a superação de desafios. In: Piccoli GV, Dalcin E (eds) Desafios do cerrado: Como sustentar a expansão da produção com produtividade e competitiva. Associação Matogrossense dos Produtores de Algodão, Cuiabá, pp 215–253Google Scholar
  41. Suassuna ND, Scoz LB, Giband M (2016) Melhoramento genético do algodoeiro para resistência aos nematoides: seleção assistida por marcadores moleculares. In: Galbieri R, Belot JL (eds) Nematoides fitoparasitas do algodoeiro nos cerrados brasileiros: biologia e medidas de controle. Instituto Mato-grossense do Algodão, Cuiabá, pp 243–256Google Scholar
  42. Suassuna ND, Lopes CML, Perina FJ, Silva Filho JL, Morello CL, Carneiro RMDG (2019) Piramiding resistance to main cotton diseases in Brazil. In: Beltwide cotton conferences, New Orleans, MS, USA, 2019. Natl Cotton Council of AmericaGoogle Scholar
  43. Ulloa M, Wang C, Roberts PA (2010) Gene action analysis by inheritance and quantitative trait loci mapping of resistance to root-knot nematodes in cotton. Plant Breed 129:541–550Google Scholar
  44. Wang C, Ulloa M, Roberts PA (2006) Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in AcalaNemX cotton (Gossypium hirsutum L.). Theor Appl Genet 112:770–777PubMedCrossRefGoogle Scholar
  45. Weaver DB (2015) Cotton nematodes. In: Fang DD, Percy RG (eds) Cotton. ASA, CSSA and SSSA, Madison, pp 1–24Google Scholar
  46. Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. In: Fang DD, Percy RG (eds) Cotton, vol 57. American Society of Agronomy Inc., Madison, pp 25–44. CrossRefGoogle Scholar
  47. Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM (2009) Evolution and natural history of the cotton genus. In: Paterson AH (ed) Genetics and genomics of cotton, plant genetics and genomics: crops and models, vol 3. Springer, New York, pp 3–22CrossRefGoogle Scholar
  48. Williamson VM, Hussey RS (1996) Nematode pathogenesis and resistance in plants. Plant Cell 8:1735–1745PubMedPubMedCentralGoogle Scholar
  49. Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403PubMedCrossRefGoogle Scholar
  50. Wu Z, Solimar KM, Zipf A, Saha S, Sharma GC, Jenkins JN (2005) Isolation and characterization of genes differentially expressed in fiber of Gossypium barbadense L. J Cotton Sci 9:166–174Google Scholar
  51. Xiao J, Fang DD, Bhatti M, Hendrix B, Cantrell RG (2010) A SNP haplotype associated with a gene resistant to Xanthomonas axonopodis pv. malvacearum in upland cotton (Gossypium hirsutum L.). Mol Breed 25:593–602CrossRefGoogle Scholar
  52. Ynturi P, McCarty JC, Gutierrez OA, Saha S (2006) Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton. Crop Sci 46:2670–2674CrossRefGoogle Scholar
  53. Yuksel B, Khezir H, Adem B, Muhammad TA (2016) Insight in the utilization of marker assisted selection in cotton. Mol Plant Breed 7:1–17Google Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • C. M. L. Lopes
    • 1
    • 2
    Email author
  • N. D. Suassuna
    • 3
  • J. E. Cares
    • 1
  • A. C. M. M. Gomes
    • 2
  • F. J. Perina
    • 3
  • G. F. Nascimento
    • 2
  • J. S. F. Mendonça
    • 2
  • A. W. Moita
    • 4
  • R. M. D. G. Carneiro
    • 2
  1. 1.Graduate Program in Plant PathologyUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Embrapa Centro de Recursos Genéticos e BiotecnologiaBrasíliaBrazil
  3. 3.Embrapa AlgodãoCampina GrandeBrazil
  4. 4.Embrapa HortaliçasBrasíliaBrazil

Personalised recommendations