Advertisement

Euphytica

, 215:208 | Cite as

Detection of quantitative trait loci for salt tolerance in zombi pea [Vigna vexillata (L.) A. Rich]

  • Sujinna Dachapak
  • Prakit SomtaEmail author
  • Ken Naito
  • Norihiko Tomooka
  • Akito Kaga
  • Peerasak Srinives
Article
  • 29 Downloads

Abstract

Zombi pea [Vigna vexillata (L.) A. Rich] is an underutilized legume crop, with highly diverse wild species that carry genes conferring resistance to several biotic and abiotic stresses. The objective of this study was to construct a zombi pea genetic linkage map and locate quantitative trait loci related to salt resistance. A zombi pea F2 population (159 individuals) developed from a cross between the salt-resistant wild zombi pea accession JP235908 (var. ovata; female parent) and the salt-susceptible cultivated zombi pea accession TVNu240 (var. macrosperma; male parent) was genotyped with simple sequence repeat (SSR) and restriction site-associated DNA sequencing (RAD-seq) markers. A genetic linkage map with 10 linkage groups (LGs) was constructed based on 379 markers (136 SSR and 243 RAD-seq markers). The map spanned 793.25 cM, with a mean distance between adjacent markers of 2.14 cM. A comparative genome analysis revealed high macro-synteny between zombi pea and mung bean/adzuki bean, although several chromosomal translocations likely occurred in zombi pea. The salt tolerance of the F2:3 population was evaluated at the seedling stage under hydroponic conditions. Inclusive composite interval mapping identified three quantitative trait loci (QTLs) (qSaltol1.1 on LG1, qSaltol2.1 on LG2, and qSaltol6.1 on LG6) related to the salt resistance of the F2 population. The qSaltol1.1, qSaltol2.1, and qSaltol6.1 QTLs explained 13.3%, 7.6%, and 8.1% of the salt-resistance phenotypic variance, respectively. A comparative genome analysis revealed that qSaltol1.1 may correspond to the Saltol1.1 QTL conferring salt tolerance in beach cowpea [Vigna marina (Burm.) Merr.], which is a halophytic species. Moreover, two genes encoding a plasma membrane H+-ATPase and a gene encoding a cation/proton exchanger may contribute to the salt resistance of zombi pea and beach cowpea. These findings may be relevant for the breeding of salt-resistant zombi pea plants.

Keywords

Vigna vexillata Salt tolerance Salinity tolerance QTL 

Notes

Acknowledgements

This research was supported by the Thailand Research Fund (Grant No. RSA5880051) and the Royal Golden Jubilee Ph.D. Program, Thailand Research Fund. We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.

Ethical standard

All the experiments conducted in this study complied with the current laws in Thailand and Japan.

References

  1. Birch ANE, Fellow LE, Evans SV, Doherty K (1986) Para-Aminophenylalanine in Vigna : possible taxonomic and ecological significance as a seed defence against bruchids. Phytochemistry 25:2745–2749CrossRefGoogle Scholar
  2. Blair MW, Pedraza F et al (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374.  https://doi.org/10.1007/s00122-003-1398-6 CrossRefPubMedGoogle Scholar
  3. Chaitieng B, Kaga A et al (2006) Development of black gram [Vigna mungo (L.) Hepper] linkage map and its comparison with an azuki bean [Vigna angularis (Wild.) Ohwi and Ohashi] linkage map. Theor Appl Genet 13(7):1261–1269.  https://doi.org/10.1007/s00122-006-0380-5 CrossRefGoogle Scholar
  4. Chankaew S, Isemura T et al (2014) Detection of genome donor species of neglected tetraploid crop Vigna reflexo-pilosa (créole bean), and genetic structure of diploid species based on newly developed EST-SSR markers from azuki bean (Vigna angularis). PLoS ONE 9(8):e104990.  https://doi.org/10.1371/journal.pone.0104990 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, Somta P et al (2014) QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor Appl Genet. 12:691–702.  https://doi.org/10.1007/s00122-013-2251-1 CrossRefGoogle Scholar
  6. Dachapak S, Somta P, Poonchaivilaisak S, Yimram T, Srinives P (2017) Genetic diversity and structure of the zombi pea (Vigna vexillata (L.) A. Rich) gene pool based on SSR marker analysis. Genetica 145:189–200.  https://doi.org/10.1007/s10709-017-9957-y CrossRefPubMedGoogle Scholar
  7. Dachapak S, Tomooka N, Somta P, Naito K, Kaga A, Srinives P (2018) QTL analysis of domestication syndrome in zombi pea (Vigna vexillata), an underutilized legume crop. PLoS ONE 13(12):e0200116.  https://doi.org/10.1371/journal.pone.0200116 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Do TD, Chen H, Hien VT, Hamwieh A, Yamada T, Sato T et al (2016) Ncl synchronously regulates Na+, K+, and Cl in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 8(6):19147.  https://doi.org/10.1038/srep19147 CrossRefGoogle Scholar
  9. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963.  https://doi.org/10.1111/j.1469-8137.2008.02531.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gomathinayagam P, Ganesh Ram S, Rathnaswamy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata (L.) Walp. and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica 102:203–209CrossRefGoogle Scholar
  11. Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J et al (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950.  https://doi.org/10.1111/tpj.12695 CrossRefPubMedGoogle Scholar
  12. Han OK, Kaga A et al (2005) A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 111:1278–1287.  https://doi.org/10.1007/s00122-005-0046-8 CrossRefPubMedGoogle Scholar
  13. Hanai LR, de Campos T, Camargo LE, Benchimol LL, de Souza AP, Melotto M et al (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome 50:266–277.  https://doi.org/10.1139/G07-007 CrossRefPubMedGoogle Scholar
  14. Iseki K, Takahashi Y, Muto C, Naito K, Tomooka N (2016) Diversity and evolution of salt tolerance in the genus Vigna. PLoS ONE 11(10):e0164711.  https://doi.org/10.1371/journal.pone.0164711 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Isemura T, Kaga A et al (2010) The genetics of the domestication of rice bean, Vigna umbellata. Ann Bot 106:927–944.  https://doi.org/10.1093/aob/mcq188 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Isemura T, Kaga A et al. (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7(8):e41304. https://doi.org/10.1371/journal.pone.0041304 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Iwata H, Ninomiya S (2006) AntMap: Constructing genetic linkage maps using an ant colony optimization algorithm. Breed Sci 56:371–377.  https://doi.org/10.1270/jsbbs.56.371 CrossRefGoogle Scholar
  18. Jackai LEN, Oghiakhe S (1989) Pod wall trichomes and resistance of two wild cowpea, Vigna vexillata, accessions to Maruca testualis (Geyer) (Lepidoptera: Pyralidae) and Clavigralla tomentosicollis Stal (Hemiptera: Coreidae). Bull Entomol Res 79:595–605CrossRefGoogle Scholar
  19. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458CrossRefGoogle Scholar
  20. Karuniawan A, Iswandi A, Kale PR, Heinzemann J, Grüneberg WJ (2006) Vigna vexillata (L.) A. Rich. cultivated as a root crop in Bali and Timor. Genet Resour Crop Evol 53:213–217CrossRefGoogle Scholar
  21. Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y et al (2012) An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis group) and QTL analysis of pod length. Genome. 55:81–92.  https://doi.org/10.1139/G11-078 CrossRefPubMedGoogle Scholar
  22. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  23. Lawn RJ, Watkinson AR (2002) Habitats, morphological diversity and distribution of the genus Vigna Savi in Australia. Aust J Agri Res 53:1305–1316CrossRefGoogle Scholar
  24. Li CD, Fatokun CA et al (2001) Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197.  https://doi.org/10.2135/cropsci2001.411189x CrossRefGoogle Scholar
  25. Li H, Ye G et al (2007) A modified algorithm for improvement of composite interval mapping. Genetics 175:361–374.  https://doi.org/10.1534/genetics.106.066811 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lodhi MA, Ye GN et al (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13.  https://doi.org/10.1007/BF02668658 CrossRefGoogle Scholar
  27. Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30.  https://doi.org/10.3390/horticulturae3020030 CrossRefGoogle Scholar
  28. Maréchal R, Mascherpa JM, Stainier F (1978) Etude taxonomique d’un grouped’especes des genres Phaseolus et Vigna (Papilonaceae) sur la base des donnees morphologiques et polliques, traitees pour l’analyse informatique. Boissiera 28:1–273Google Scholar
  29. Marubodee R, Ogiso-Tanaka E, Isemura T, Chankaew S, Kaga A, Naito K et al (2015) Construction of an SSR and RAD-marker based molecular linkage map of Vigna vexillata (L.) A. Rich. PLoS ONE 10(9):e0138942.  https://doi.org/10.1371/journal.pone.0138942 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Maxted N, Mabuza-Diamini P, Moss H, Padulosi S, Jarvis A, Guarino L (2004) An ecogeographic study: African Vigna, systematic and ecogeographic studies of crop genepool. International Plant Genetic Resources Institutes, Rome, ItalyGoogle Scholar
  31. Meng L, Li H et al (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative locus mapping in biparental populations. Crop J 3(3):269–283.  https://doi.org/10.1016/j.cj.2015.01.001 CrossRefGoogle Scholar
  32. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681.  https://doi.org/10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pasquet RS (2001) Vigna Savi. In: Mackinder B, Pasquet R, Polhill R, Verdcourt B (eds) Flora Zambesiaca, volume part Phaseoleae. Royal Botanic Gardens Kew, London, pp 121–156Google Scholar
  34. Pienaar BJ, Kok PDF (1991) The Vigna vexillata complex (Fabaceae) in Southern Africa. S Afri J Bot 57:236–245CrossRefGoogle Scholar
  35. Qi X, Li MW, Xie M, Liu X, Ni M, Shao G et al (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 9(5):4340.  https://doi.org/10.1038/ncomms5340 CrossRefGoogle Scholar
  36. Sakai H, Naito K et al (2015) The power of single molecule real-time sequencing technology in the de novo assembly of eukaryotic genome. Sci Rep 5:16780.  https://doi.org/10.1038/srep16780 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Seehalak W, Somta P et al (2009) Microsatellite markers for mungbean developed from sequence database. Mol Ecol Resour 9:862–864.  https://doi.org/10.1111/j.1755-0998.2009.02655.x CrossRefPubMedGoogle Scholar
  38. Shrivastava P, Kumar R (2015) Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131.  https://doi.org/10.1016/j.sjbs.2014.12.001 CrossRefPubMedGoogle Scholar
  39. Somta P, Mucsh W, Kongsamai B, Chanprame S, Nakasathien S, Toojinda T et al (2008) New microsatellite markers isolated from mungbean (Vigna radiata (L.) Wilczek). Mol Ecol Res 8:1155–1157CrossRefGoogle Scholar
  40. Somta P, Seehalak W, Srinives P (2009) Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet 10:1939–1943.  https://doi.org/10.1007/s10592-009-9860-x CrossRefGoogle Scholar
  41. Song XL, Sun XZ, Zhang TZ (2006) Segregation distortion and its effect on genetic mapping in plants. Chinese J Agric Biotechnol 3:163–169.  https://doi.org/10.1079/CJB2006110 CrossRefGoogle Scholar
  42. Tangphatsornruang S, Somta P et al (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L) Wilczek). BMC Plant Biol 9:137.  https://doi.org/10.1186/1471-2229-9-137 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thottappilly G, Ng NQ, Russel HW (1994) Screening germplasm of Vigna vexillata for resistance to cowpea mottle virus. Int J Trop Plant Dis 12:75–80Google Scholar
  44. Wang XW, Kaga A et al (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd) Ohwi and Ohashi]. Theor Appl Genet 109:352–360.  https://doi.org/10.1007/s00122-004-1634-8 CrossRefPubMedGoogle Scholar
  45. Xu Y, Zhu L, Xiao J et al (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545CrossRefGoogle Scholar
  46. Yu K, Park SJ et al (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434.  https://doi.org/10.1093/jhered/91.6.429 CrossRefPubMedGoogle Scholar
  47. Yundaeng C, Somta P, Amkul K, Kongjaimun A, Kaga A, Tomooka N (2019) Construction of genetic linkage map and genome dissection of domestication-related traits of moth bean (Vigna aconitifolia), a legume crop of arid areas. Mol Genet Genomics.  https://doi.org/10.1007/s00438-019-01536-0 CrossRefPubMedGoogle Scholar
  48. Zamir D, Tadmor Y (1986) Unequal segregation of nuclear gene in plants. Bot Gaz 147:355–358CrossRefGoogle Scholar
  49. Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agronomy, Faculty of Agriculture at Kamphaeng SaenKasetsart UniversityNakhon PathomThailand
  2. 2.Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE)BangkokThailand
  3. 3.The Royal Society of ThailandBangkokThailand
  4. 4.Genetic Resources CenterNational Agriculture and Food Research OrganizationTsukubaJapan
  5. 5.Soybean and Field Crop Applied Genomics Research UnitNational Agriculture and Food Research OrganizationTsukubaJapan

Personalised recommendations