, 215:205 | Cite as

Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines

  • Xin Ma
  • Xiaoping Chen
  • Jie Zhao
  • Shanshan Wang
  • Lubin Tan
  • Chuanqing Sun
  • Fengxia LiuEmail author


Cadmium (Cd) is a toxic heavy metal that is harmful to human health. Oryza nivara, a wild rice species, serves as a germplasm pool for various favorable genes that can be used in cultivated rice. To detect quantitative trait loci (QTLs) and germplasm related to Cd tolerance in O. nivara, we analyzed one set of introgression lines with a high-density genetic map. Seven QTLs related to Cd tolerance were identified on chromosomes 2, 4, 6, and 8, and an allele of one locus (Bin774) from O. nivara affected two phenotypic traits and was able to increase Cd tolerance in rice. In a further analysis of GeneChip data released by the National Center for Biotechnology Information, we explored five candidate genes induced by Cd stress in the QTL region: two oxidoreductase genes (aldo-keto reductase genes LOC_Os04g27060 and LOC_Os04g26920); one terpene synthase gene (LOC_Os04g27190); one cysteine-rich receptor-like protein kinase gene (LOC_Os04g25060); and one serine carboxypeptidase homolog gene OsSCP23 (LOC_Os04g25560). One Cd-tolerant introgression line (Ra44) was also obtained, with a significantly higher survival rate under Cd stress (93.8%) compared to recipient parent 93-11 (2.3%). Identification of candidate genes and the Cd-tolerant introgression line Ra44 should facilitate further investigation of the mechanism of rice tolerance to Cd contamination.


Nivara wild rice Cadmium tolerance QTL Introgression line 



This work was supported by the National Natural Science Foundation of China (Grant No. 31671647).

Supplementary material

10681_2019_2522_MOESM1_ESM.xlsx (18 kb)
Supplementary material 1 (XLSX 18 kb)
10681_2019_2522_MOESM2_ESM.xlsx (11 kb)
Supplementary material 2 (XLSX 10 kb)


  1. Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamoto T, Yano M, Ishikawa S (2013) Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breed Sci 63(3):284–291PubMedPubMedCentralGoogle Scholar
  2. Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojarvi J, Rayapuram C, Idanheimo N, Hunter K, Kimura S, Merilo E, et al (2015) Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet 11(7):e1005373PubMedPubMedCentralGoogle Scholar
  3. Capra E, Colombi C, De Poli P, Nocito FF, Cocucci M, Vecchietti A, Marocco A, Stile MR, Rossini L (2015) Protein profiling and tps23 induction in different maize lines in response to methyl jasmonate treatment and Diabrotica virgifera infestation. J Plant Physiol 175:68–77PubMedGoogle Scholar
  4. Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309PubMedGoogle Scholar
  5. Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao FJ (2017) Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice 10(1):9PubMedPubMedCentralGoogle Scholar
  6. Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, et al (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genom 11:648Google Scholar
  7. Gao F, Liu B, Li M, Gao X, Fang Q, Liu C, Ding H, Wang L, Gao X (2018) Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of freesia × hybrida. J Exp Bot 69(18):4249–4265PubMedPubMedCentralGoogle Scholar
  8. Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D (2018) A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front Plant Sci 9:476PubMedPubMedCentralGoogle Scholar
  9. Hegedüs A, Erdei S, Janda T, Tóth E, Horváth G, Dudits D (2004) Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Sci 166(5):1329–1333Google Scholar
  10. Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L (2017) OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Sci 264:1–8PubMedGoogle Scholar
  11. Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J (2015) Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem 63(50):10885–10892PubMedGoogle Scholar
  12. Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61(3):923–934PubMedGoogle Scholar
  13. Ishikawa S, Ae N, Yano M (2005) Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol 168(2):345–350PubMedGoogle Scholar
  14. Kanayama Y, Mizutani R, Yaguchi S, Hojo A, Ikeda H, Nishiyama M, Kanahama K (2014) Characterization of an uncharacterized aldo-keto reductase gene from peach and its role in abiotic stress tolerance. Phytochemistry 104:30–36PubMedGoogle Scholar
  15. Kollner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70(9):1139–1145PubMedGoogle Scholar
  16. Kumar D, Singh P, Yusuf MA, Upadhyaya CP, Roy SD, Hohn T, Sarin NB (2013) The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. Mol Biotechnol 54(2):292–303PubMedGoogle Scholar
  17. Kunihiro S, Kowata H, Kondou Y, Takahashi S, Matsui M, Berberich T, Youssefian S, Hidema J, Kusano T (2014) Overexpression of rice OsREX1-S, encoding a putative component of the core general transcription and DNA repair factor IIH, renders plant cells tolerant to cadmium- and UV-induced damage by enhancing DNA excision repair. Planta 239(5):1101–1111PubMedGoogle Scholar
  18. Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C (2017) AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiol Plant 160(3):312–327PubMedGoogle Scholar
  19. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760PubMedPubMedCentralGoogle Scholar
  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079PubMedPubMedCentralGoogle Scholar
  21. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175(1):361–374PubMedPubMedCentralGoogle Scholar
  22. Li Z, Tang L, Qiu J, Zhang W, Wang Y, Tong X, Wei X, Hou Y, Zhang J (2016) Serine carboxypeptidase 46 regulates grain filling and seed germination in rice (Oryza sativa L.). PLoS One 11(7):e0159737PubMedPubMedCentralGoogle Scholar
  23. Lim SD, Hwang JG, Han AR, Park YC, Lee C, Ok YS, Jang CS (2014) Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes. Plant Mol Biol 85(4–5):365–379PubMedGoogle Scholar
  24. Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420(1):57–65PubMedGoogle Scholar
  25. Lu K, Liang S, Wu Z, Bi C, Yu YT, Wang XF, Zhang DP (2016) Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. J Exp Bot 67(17):5009–5027PubMedPubMedCentralGoogle Scholar
  26. Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B et al (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9(1):645PubMedPubMedCentralGoogle Scholar
  27. Ma X, Fu Y, Zhao X, Jiang L, Zhu Z, Gu P, Xu W, Su Z, Sun C, Tan L (2016) Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Sci Rep 6:27425PubMedPubMedCentralGoogle Scholar
  28. Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, et al (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189(1):190–199PubMedGoogle Scholar
  29. Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes RK, Papadopoulou K, Melton R, Philo M, Sainsbury F, et al (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21(8):2473–2484PubMedPubMedCentralGoogle Scholar
  30. Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469Google Scholar
  31. Pathare V, Srivastava S, Sonawane BV, Suprasanna P (2016) Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiol Mol Biol Plants 22(4):515–522PubMedPubMedCentralGoogle Scholar
  32. Puig J, Meynard D, Khong GN, Pauluzzi G, Guiderdoni E, Gantet P (2013) Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expr Patterns 13(5–6):160–170PubMedGoogle Scholar
  33. Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res Int 23(18):17859–17879PubMedGoogle Scholar
  34. Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65(20):6013–6021PubMedPubMedCentralGoogle Scholar
  35. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167PubMedPubMedCentralGoogle Scholar
  36. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53(1):213–224PubMedGoogle Scholar
  37. Sun L, Xu X, Jiang Y, Zhu Q, Yang F, Zhou J, Yang Y, Huang Z, Li A, Chen L, et al (2016) Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice. Front Plant Sci 7:1407PubMedPubMedCentralGoogle Scholar
  38. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850PubMedPubMedCentralGoogle Scholar
  39. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35(11):1948–1957PubMedGoogle Scholar
  40. Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, et al (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120(6):1175–1182PubMedGoogle Scholar
  41. Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129PubMedPubMedCentralGoogle Scholar
  42. Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009a) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182(3):644–653PubMedGoogle Scholar
  43. Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009b) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50(12):2223–2233PubMedGoogle Scholar
  44. Ueno D, Koyama E, Yamaji N, Ma JF (2011) Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J Exp Bot 62(7):2265–2272PubMedGoogle Scholar
  45. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107(38):16500–16505PubMedGoogle Scholar
  46. Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108(52):20959–20964PubMedGoogle Scholar
  47. Wang H, He Z, Luo L, Zhao X, Lu Z, Luo T, Li M, Zhang Y (2018) An aldo-keto reductase, Bbakr1, is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen, Beauveria bassiana. Fungal Genet Biol 111:7–15PubMedGoogle Scholar
  48. Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Ma JF (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162(2):927–939PubMedPubMedCentralGoogle Scholar
  49. Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang C, Salt D, Zhao F (2016) A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ 39(9):1941–1954PubMedGoogle Scholar
  50. Yang T, Yao S, Hao L, Zhao Y, Lu W, Xiao K (2016) Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep 35(11):2309–2323PubMedGoogle Scholar
  51. Zhao F, Ma Y, Zhu Y, Tang Z, McGrath S (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49(2):750–759PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina

Personalised recommendations