, 215:194 | Cite as

Assessment of grapevine germoplasm collection for resistance to grape leaf rust (Phakopsora euvitis) using a leaf disc assay

  • Beatriz Ribeiro Gomes
  • Amauri Bogo
  • Andrio Copatti
  • Claudia Aparecida Guginski-Piva
  • Andriele Caroline de Morais
  • Jean Alberto Zanghelini
  • Camila Bitencourt
  • Diogo Stefen
  • Nicoli Orsi
  • Crysttian Arantes Paixão
  • Lírio Luiz Dal Vesco
  • Patrícia Silva Ritschel
  • Leocir José WelterEmail author


The present study aimed to assess 25 grapevine genotypes, representing different Vitis species, for resistance to grapevine leaf rust (GLR), caused by Phakopsora euvitis, using leaf disc assay. Disinfected leaf discs of 12 mm in diameter were placed in agar-water medium. On the abaxial side, a 30-µl drop at a concentration of 30,000 urediniospores/ml was deposited and incubated in a growth chamber under controlled conditions. The genotypes were assessed by the components of resistance latent period, number of pustule per cm2, diameter of pustules (DP; mm), number of urediniospores per disc, severity (%), and area under the disease severity progress curve. The ANOVA revealed a significant difference (p < 0.05) among genotypes for all components of resistance tested. Significant correlation was observed for all components of resistance evaluated. Based on disease severity, the genotypes were classified into four resistance categories: (1) resistant, (2) partially resistant, (3) susceptible, and (4) highly susceptible. None of the genotypes were asymptomatic and 32% were considered resistant or partially resistant. ‘IAC766’ and ‘Seibel 405’ were the most resistant, showing the lowest severity of 0.03 and 1.48%, respectively. ‘Seibel 128’, V. del rioi Sd1, V. slavinii and V. candicans were partially resistant. From the resistant and partially resistant genotypes, only V. candicans has trichomes on the abaxial leaf surface. Particularly, the resistant genotypes are resistance sources to GLR to be explored in future breeding programs and for genetic analysis to localize resistant genes to P. euvitis.


Vitis spp. Plant breeding Germplasm characterization Disease resistance Plant–pathogen interaction 



This research was financially supported by Embrapa-SEG through the project “Adding value to grape genetic resources aiming to meet demands resulting from the expansion of Brazilian viticulture and from the modernization of consumer (Grant No.:”. We are also thankful to FAPESC (Santa Catarina State Foundation for Scientific and Technological Development) and Foundation for the Coordination and Improvement of Higher Level or Education Personnel (Capes) for fellowship to BRG.


  1. Angelotti F, Scapin CR, Tessmann DJ, Vida JB, Vieira RA, Souto ER (2008) Genetic resistance of grape genotypes to rust. Pesq Agrop Bras 43:1129–1134CrossRefGoogle Scholar
  2. Angelotti F, Tessmann DJ, Scapin CR, Vida JB (2011) Effect of temperature and light on germination of uredinispores of Phakopsora euvitis. Summa Phytopathol 37:59–61CrossRefGoogle Scholar
  3. Angelotti F, Regina C, Buffara S, Vieira RA, Vida JB (2014) Protective, curative and eradicative activities of fungicides against grapevine rust. Ciência Rural 44:1367–1370CrossRefGoogle Scholar
  4. Azimi MH, Jozghasemi S, Barba-Gonzalez R (2018) Multivariate analysis of morphological characteristics in Iris germanica hybrids. Euphytica 214:161CrossRefGoogle Scholar
  5. Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176PubMedCrossRefGoogle Scholar
  6. Boso S, Alonso-Villaverde V, Gago P, Santiago JL, Martínez MC (2014) Susceptibility to downy mildew (Plasmopara viticola) of different Vitis varieties. Crop Protection 6:26–35CrossRefGoogle Scholar
  7. Brown MV, Moore JN, Fenn P, McNew RW (1999) Comparison of leaf disk, greenhouse, and field screening procedures for evaluation of grape seedlings for downy mildew resistance. HortScience 34:331–332CrossRefGoogle Scholar
  8. Buerstmayr M, Matiasch L, Mascher F, Vida G, Ittu M, Robert O, Holdgate S, Flath K, Neumayer A, Buerstmayr H (2014) Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. Theor Appl Genet 127:2011–2028PubMedPubMedCentralCrossRefGoogle Scholar
  9. Buonassisi D, Colombo M, Migliaro D, Dolzani C, Peressotti E, Mizzotti C, Velasco R, Masiero S, Perazzolli M, Vezzulli S (2017) Breeding for grapevine downy mildew resistance: a review of “omics” approaches. Euphytica 213:103–124CrossRefGoogle Scholar
  10. Calonnec A, Wiedemann-Merdinoglu S, Delière L, Cartolaro P, Schneider C, Delmotte F (2013) The reliability of leaf bioassays for predicting disease resistance on fruit: a case study on grapevine resistance to downy and powdery mildew. Plant Pathol 62:533–544CrossRefGoogle Scholar
  11. Calonnec A, Jolivet J, Vivin P, Schnee S (2018) Pathogenicity traits correlate with the susceptible Vitis vinifera leaf physiology transition in the biotroph fungus Erysiphe necator: an adaptation to plant ontogenic resistance. Frontiers Plant Science 9:1–17CrossRefGoogle Scholar
  12. Campbell CL, Madden LV (1990) Introduction to Plant Disease Epidemiology”. Wiley, New YorkGoogle Scholar
  13. Deglène-Benbrahim L, Wiedemann-Merdinoglu S, Merdinoglu D, Walter B (2010) Evaluation of downy mildew resistance in grapevine by leaf disc bioassay with in vitro- and greenhouse-grown plants. Am J Enol Vitic 61:521–528CrossRefGoogle Scholar
  14. do Vale FXR, Parlevliet JE, Zambolim L (2001) Concepts in plant disease resistance. Fitopatologia Brasileira 26:577–589CrossRefGoogle Scholar
  15. Eibach R, Zyprian E, Welter LJ, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124Google Scholar
  16. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042CrossRefGoogle Scholar
  17. Gómez-Zeledón J, Kaiser M, Spring O (2016) An extended leaf disc test for virulence assessment in Plasmopara viticola and detection of downy mildew resistance in vitis. J Plant Pathol Microbiol 7:1–6CrossRefGoogle Scholar
  18. Hammer Ø, Harper DTA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9Google Scholar
  19. Hennessy CR, Daly AM, Hearnden MN (2007) Assessment of grapevine cultivars for resistance to Phakopsora euvitis. Australas Plant Pathol 36:313–317CrossRefGoogle Scholar
  20. Herzog S, Jaiswal SN, Urban E, Riemer A, Fischer S, Heidmann SK (2013) Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with Condensin I. PLoS Genet 9:1–17CrossRefGoogle Scholar
  21. Hodson DP (2011) Shifting boundaries: challenges for rust monitoring. Euphytica 179:93–104CrossRefGoogle Scholar
  22. IPGRI, UPOV, OIV (1997) Descriptors for grapevine (Vitis spp.). International Union for the Protection of New Varieties of Plants (UPOV), Geneva, Switzerland/Office International de la Vigne et du Vin (OIV), Paris, France/International Plant Genetic Resources Institute (IPGRI), Rome, ItalyGoogle Scholar
  23. Jürges G, Kassemeyer HH, Dürrenberger M, Düggelin M, Nick P (2009) The mode of interaction between Vitis and Plasmopara viticola Berk. & Curt. Ex de Bary depends on the host species. Plant Biology 11:886–898PubMedCrossRefGoogle Scholar
  24. Kortekamp A, Zyprian E (1999) Leaf hairs as a basic protective barrier against downy mildew of grape. J Phytopathol 147:453–459CrossRefGoogle Scholar
  25. Li L, Zhang Q, Huang DA (2014) Review of imaging techniques for plant phenotyping. Sensors 14:20078–20111PubMedCrossRefGoogle Scholar
  26. Li X, Wu J, Yin L, Zhang Y, Qu J, Lu J (2015) Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine. Plant Physiol Biochem 95:1–14PubMedCrossRefGoogle Scholar
  27. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278PubMedCrossRefGoogle Scholar
  28. Matsunaga TM, Ogawa D, Taguchi-Shiobara F, Ishimoto M, Matsunaga S, Habu Y (2017) Direct quantitative evaluation of disease symptoms on living plant leaves growing under natural light. Breed Sci 67:316–319PubMedPubMedCentralCrossRefGoogle Scholar
  29. Maul et al. (2019) Vitis International Variety Catalogue. Accessed on Sept 2019
  30. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356PubMedCrossRefGoogle Scholar
  31. Merdinoglu D, Wiedemn-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hort 603:451–456CrossRefGoogle Scholar
  32. Montaigne E, Coelho A, Khefif L (2016) Economic issues and perspectives on innovation in new resistant grapevine varieties in France. Wine Econ Policy 5:73–77CrossRefGoogle Scholar
  33. Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, Velasco R, Kozma P, Grando MS (2010) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7:153–167CrossRefGoogle Scholar
  34. Mutka AM, Bart Rebecca S (2015) Image-based phenotyping of plant disease symptoms. Front Plant Sci 5:479–482CrossRefGoogle Scholar
  35. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535PubMedCrossRefGoogle Scholar
  36. Naruzawa ES, Celoto IBM, Papa MFS, Tomquelski GV, Boliani AC (2006) Estudos epidemiológicos e controle químico de Phakopsora euvitis. Fitopatol Brasileira 31:41–45CrossRefGoogle Scholar
  37. Nogueira Júnior AF, Ribeiro RV, Appezzato-da-Glória B, Soares MKM, Rasera JB, Amorim L (2017) Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine. Front Sci 8:1–12Google Scholar
  38. Oliveira PRD, Scotton DC, Nishimura DS, Figueira A (2005) Análise da diversidade genética por AFLP e identificação de marcadores associados à resistência a doenças em videira. Revista Brasileira de Fruticultura Jaboticabal 27:454–457CrossRefGoogle Scholar
  39. Ono Y (2000) Taxonomy of the Phakopsora ampelopsidis species complex on vitaceous hosts in Asia including a new species, P. euvitis. Mycologia 92:154–173CrossRefGoogle Scholar
  40. Parlevliet JE (1979) Compnents of resistance that reduce the rate of epidemic development. Annu Rev Phytopathol 17:203–222CrossRefGoogle Scholar
  41. Parlevliet JE, Van Ommeren A (1975) Partial resistance of barley to leaf rust, Puccinia hordei. II. Relationship between field trials, micro plot tests and latent period. Euphytica 24:293–303CrossRefGoogle Scholar
  42. Patil SG, Honrao BK, Karkamkar SP (1998) Reaction of some grape germplasm against the rust disease. J Maharashtra Agric Univ 23:138–140Google Scholar
  43. Primiano IV, Loehrer M, Amorim L, Schaffrath U (2017) Asian grapevine leaf rust caused by Phakopsora euvitis: an important disease in Brazil. Plant Pathol 66:691–701CrossRefGoogle Scholar
  44. Saifert L, Sánchez-Mora FD, Assumpção WT, Zanghelini JA, Giacometti R, Novak EI, Dal Vesco LL, Nodari RO, Eibach R, Welter LJ (2018) Marker-assisted pyramiding of resistance loci to grape downy mildew. Pesquisa Agropecuária Brasileira 53:602–610CrossRefGoogle Scholar
  45. Sánchez-Mora FD, Saifert L, Zanghelini JA, Assumpção WT, Guginski P, Giacometti RG, Novak EI, Klabunde GH, Eibach R, Dal Vesco LL, Nodari RO, Welter LJ (2017) Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola). Crop Breed Appl Biotechnol 17:141–149CrossRefGoogle Scholar
  46. Scapin-Buffara CR, Angelotti F, Dufault NS, Pereira CB, Dauri J, Tessmann DJ (2018) Seasonal progression of leaf rust in ‘Niagara Rosada’ grapevine in a biannual crop system in Brazil. Eur J Plant Pathol 152:589–597CrossRefGoogle Scholar
  47. Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176PubMedCrossRefGoogle Scholar
  48. Sokal RR, Rohlf FJ (1995) Biometry the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Co., New YorkGoogle Scholar
  49. SPHD (2015) National diagnostic protocol for Phakopsora euvitis, the cause of grapevine leaf rust. Subcommittee on Plant Health Diagnostics, AustraliaGoogle Scholar
  50. Staples RC (2000) Research on the rust fungi during the twentieth century. Ann Rev Phytopathol 38:49–69CrossRefGoogle Scholar
  51. Staudt G, Kassemeyer H (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis J Grapevine 34:225–228Google Scholar
  52. Tessmann DJ, Vida JB, Lopes DB (2003) Uva: novo problema. Cultivar HF 4:22–25Google Scholar
  53. Tessmann DJ, Dianese JC, Genta W, Vida JB, Mio LLM (2004) Grape rust caused by Phakopsora euvitis, a new disease for Brazil. Fitopatol Bras 29:338CrossRefGoogle Scholar
  54. Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. Fruit Veg Cereal Sci Biotechnol 5:79–100Google Scholar
  55. Tyson JL, Afullerton R (2015) A leaf disc assay for determining resistance of taro to Phytophthora colocasiae. N Z Plant Prot 68:415–419Google Scholar
  56. Veikondis R, Burger P, Vermeulen A, Van Heerden CJ, Prins R (2018) Confirmation of the effectiveness and genetic positions of disease resistance loci in ‘Kishmish vatkana’ (Ren1) and ‘Villard blanc’ (Ren3 and Rpv3). South Afr J Enol Vitic 39:185–195Google Scholar
  57. Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, Cindric P, Kozma P, Scalabrin S, Morgante M, Testolin R, Di Gaspero G (2013) Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. Plos One 8:e61228PubMedPubMedCentralCrossRefGoogle Scholar
  58. Weinet MP, Shivas RG, Pitkethley RN, Daly AM (2003) First record of grapevine leaf rust in the Northern Territory, Australia. Australas Plant Pathol 32:117–118CrossRefGoogle Scholar
  59. Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374CrossRefGoogle Scholar
  60. Wiedemann-Merdinoglu S, Prado E, Coste P, Dumas V, Butterlin G, Bouquet A, Merdinoglu D (2006) Genetic analysis of resistance to downy mildew from Muscadinia rotundifolia. In: International conference on grape genetics and breeding. ISHS, UdineGoogle Scholar
  61. Zanghelini JA, Bogo A, dal Vesco LL, Gomes BR, Mecabô CV, Herpich CH, Welter LJ (2019) Response of PIWI grapevine cultivars to downy mildew in highland region of southern Brazil. Eur J Plant Pathol 154:1–8CrossRefGoogle Scholar
  62. Zyprian E, Ochßner I, Schwander F, Šimon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Stella Grando M, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Töpfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genom 291:1573–1594CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Beatriz Ribeiro Gomes
    • 1
  • Amauri Bogo
    • 1
  • Andrio Copatti
    • 2
  • Claudia Aparecida Guginski-Piva
    • 1
  • Andriele Caroline de Morais
    • 3
  • Jean Alberto Zanghelini
    • 1
  • Camila Bitencourt
    • 3
  • Diogo Stefen
    • 3
  • Nicoli Orsi
    • 3
  • Crysttian Arantes Paixão
    • 3
  • Lírio Luiz Dal Vesco
    • 3
  • Patrícia Silva Ritschel
    • 4
  • Leocir José Welter
    • 3
    Email author
  1. 1.Crop Production Graduate ProgramSanta Catarina State University, UDESCLagesBrazil
  2. 2.Agronomy Graduate ProgramFederal University of Pelotas, Faculdade de Agronomia Eliseu MacielPelotasBrazil
  3. 3.Federal University of Santa Catarina, UFSCCuritibanosBrazil
  4. 4.Embrapa Grape and WineBento GonçalvesBrazil

Personalised recommendations