, 215:182 | Cite as

Genetic mapping reveals a candidate gene for egusi seed in watermelon

  • Feishi Luan
  • Chao Fan
  • Lei Sun
  • Haonan Cui
  • Sikandar Amanullah
  • Lili Tang
  • Peng GaoEmail author


Citrullus mucosospermus (egusi watermelon) and Citrullus lanatus (dessert watermelon) are closely related subspecies. Variation in their seed coats underlies a key to understand the major differences in seeds between these two subspecies. Although the genetic model is understood, the candidate genes controlling the egusi seed trait in watermelon are unknown. In this study, a locus that controls the egusi seed trait, WEG6.1, which is located on chromosome 6 of the watermelon genome, was identified. A total of 195 polymorphic primers and 325 F2 plants were used to construct a primary mapping population and linkage maps. A large population of 758 F2 plants was used for fine mapping of the eg gene. The candidate gene was mapped to a 130.7 kb region on chromosome 6. Eleven genes were present within the corresponding region of the reference genome. All eleven candidate genes were sequenced, revealing that the CDS of the Cla007520 gene had a 3 bp deletion that resulted in the omission of one amino acid (serine) in C. mucosospermus. In addition, expression of the Cla007520 gene was highest at the early stage of seed formation, exhibiting a downward trend thereafter. The predicted protein of the Cla007520 gene belonged to the CPP protein family, and its amino acid constituents were similar to those of AtTSO1, which is associated with promoting integument cell proliferation in ovule development. This study revealed genes that facilitate the formation of egusi seed and might lead to a breakthrough in seed development and cultivated watermelon domestication.


Egusi seed Watermelon Candidate gene Genetic mapping Expression analysis 



The project was support the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province UNPYSCT- 2016136.

Compliance with ethical standards

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing. The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.


  1. Achigan-Dako GE, Enoch G, Fanou N, Kouke A, Avohou H, Vodouhe RS, Ahanchede A (2006) Evaluation agronomique de trois espèces de Egusi (Cucurbitaceae) utilisées dans l’alimentation au Bénin et élaboration d’un modèle de prédiction du rendement. Biotechnol Agron Soc Environ 10:121–129Google Scholar
  2. Achigan-Dako GE, Avohou ES, Linsoussi C, Ahanchede A, Vodouhe RS, Blattner FR (2015) Phenetic characterization of Citrullusspp (Cucurbitaceae) and differentiation of egusi-type (C. mucosospermus). Genet Resour Crop Ev 62(8):1159–1179. CrossRefGoogle Scholar
  3. Akusu MO, Kiin-Kabari DB (2015) Comparative studies on the physicochemical and sensory properties of watermelon (Citrullus lanatus) and melon (Citrullus vulgaris) seed flours used in “egusi” soup preparation. J Food Res 4:1–6. CrossRefGoogle Scholar
  4. Andersen SU, Algreen-Petersen RG, Hoed M, Jurkiewicz A, Cvitanich C, Schauser L, Sung-Aeong O, Braunschweig U, Twell D, Jensen EO (2007) The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J Exp Bot 58(13):3657–3670. CrossRefGoogle Scholar
  5. Branham Vexler L, Meir A, Tzuri G, Frieman Z, Levi A, Wechter P, Tadmor Y, Gur A (2017) Genetic mapping of a major codominant QTL associated with β-carotene accumulation in watermelon Sandra. Mol Breed 37:146. CrossRefGoogle Scholar
  6. Broadhvest J, Baker SC, Gasser CS (2000) Short integuments promotes growth during Arabidopsis reproductive development. Genetics 155(2):899–907. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chomicki G, Renner SS (2015) Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol 205:526–532. CrossRefGoogle Scholar
  8. Curtin SJ, Michno JM, Campbell BW, Gil-Humanes J, Mathioni SM, Hammond R, Gutierrez-Gonzalez JJ, Donohue RC, Kantar MB, Eamens AL, Meyers BC, Voytas DF, Stupar RM (2016) MicroRNA maturation and microRNA target gene expression regulation are severely disrupted in soybean dicer-like1 double mutants. G3 6(2):423–433. CrossRefGoogle Scholar
  9. Cvitanich C, Pallisgaard N, Nielsen KA, Hansen AC, Larsen K, Pihakaski-Maunsbach K, Marcker KA, Jensen EO (2000) CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene. PNAS 97(14):8163–8168. CrossRefGoogle Scholar
  10. Dou JL, Zhao SJ, Lu XQ, He N, Zhang L, Ali A, Kuang HH, Liu WG (2018) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet. CrossRefGoogle Scholar
  11. Fourquin C, Vinauger-Douard M, Fogliani B, Dumas C, Scutt CP (2005) Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. PNAS 102(12):4649–4654. CrossRefGoogle Scholar
  12. Fursa TB (1983) Novyi vid arbuza Citrullus mucosospermus (Fursa) Fursa (a new species of watermelon Citrullus mucosospermus (Fursa) Fursa.). Trudy Po Prikladnoi Botanike Genetike i Selektsii 81:108–112Google Scholar
  13. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang H, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58. CrossRefGoogle Scholar
  14. Gusmini G, Wehner T, Jarret B (2004) Inheritance of egusi seed type in watermelon. J Hered 95:268–270. CrossRefGoogle Scholar
  15. Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477. CrossRefGoogle Scholar
  16. Hauser BA, Villanueva JM, Gasser CS (1998) Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis. Genetics 150:411–423. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jensen BD, Toure FM, Hamattal MA, Toure FA, Nantoume AD (2011) Watermelons in the sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou region of Mali. Ethnobot Res Appl 9:151–162CrossRefGoogle Scholar
  18. Levi A, Wechter WP, Massey LM, Carter L, Hopkins D (2011) Genetic linkage map of Citrullus lanatus var. citroides chromosomal segments introgressed into the watermelon cultivar Crimson Sweet (Citrullus lanatus var. lanatus) genome. Am J Plant Sci 2:93–110CrossRefGoogle Scholar
  19. Li K, Wu Y, Zhao H, Wang Y, Lü X, Wang J, Xu Y, Li Y, Han Y (2016) Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC Evol Biol 16(1):85. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li N, Shang JL, Wang JM, Zhou D, Li NN, Ma SW (2018) Fine mapping and discovery of candidate genes for seed size in watermelon by genome survey sequencing. Sci Rep 8:17843. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu S, Gao P, Wang XZ, Davis AR, Baloch AM, Luan FH (2014) Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica. CrossRefGoogle Scholar
  22. Meru G, McGregor C (2013) Genetic mapping of seed traits correlated with seed oil percentage in watermelon. HortScience 48(8):955–959. CrossRefGoogle Scholar
  23. Paris H (2015) Origin and emergence of the sweet dessert watermelon Citrullus lanatus. Ann Bot 116:133–148. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Prothro J, Sandlin K, Gill R, Bachlava E, White V, Knapp SJ, McGregor C (2012) Mapping of the egusi seed trait locus (eg) and quantitative trait loci associated with seed oil percentage in watermelon. J Am Soc Hort Sci 137:311–315CrossRefGoogle Scholar
  25. Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK, White V, Chan E, Tolla G, White C, Safran D, Graham E, Knapp S, McGregor C (2012) Comparative mapping in watermelon [Citrullus lanatus (thunb.) Matsum. et Nakai]. Theor Appl Genet 125(8):1603–1618. CrossRefGoogle Scholar
  26. Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7(11):497–591. CrossRefGoogle Scholar
  27. Skinner DJ, Theresa AH, Charles SG (2004) Regulation of ovule development. Plant Cell 16:S32–S45. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Song JY, Leung T, Ehler LK, Wang CX, Liu ZC (2000) Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich. Development 127:2207–2217. CrossRefGoogle Scholar
  29. Wang WP, Sijacic P, Xu PB, Lian HL, Liu ZC (2018) Arabidopsis TSO1 and MYB3R1 form a regulatory module to coordinate cell proliferation with differentiation in shoot and root. PNAS. CrossRefGoogle Scholar
  30. Wei CH, Chen XE, Wang ZY, Liu QY, Li H, Zhang Y, Ma JX, Yang JQ, Zhang X (2017) Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Windsor JB, Symonds VV, Mendenhall J, Lloyd AM (2000) Arabidopsis seed coat development morphological differentiation of the outer integument. Plant J 22(6):483–493. CrossRefGoogle Scholar
  32. Xie WC, Huang JF, Liu Y, Rao JN, He M (2015) Exploring potential new floral organ morphogensis genes of Arabidopsis thaliana using systems biology approach. Front Plant Sci 6:1–11. CrossRefGoogle Scholar
  33. Zhang HY, Fan JG, Guo SG, Ren Y, Gong GY, Zhang J (2016) Genetic diversity, population structure, and formation of a core collection of 1197 citrullus accessions. HortScience 51(1):23–29. CrossRefGoogle Scholar
  34. Zhou Y, Hu LF, Ye SF, Jiang LW, Liu SQ (2018) Genome-wide identification and characterization of cysteine-rich polycomb-like protein (CPP) family genes in cucumber (Cucumis sativus) and their roles in stress responses. Biologia 4:30. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Feishi Luan
    • 1
    • 2
  • Chao Fan
    • 1
    • 2
    • 3
  • Lei Sun
    • 1
    • 2
  • Haonan Cui
    • 1
    • 2
  • Sikandar Amanullah
    • 1
    • 2
  • Lili Tang
    • 1
    • 2
  • Peng Gao
    • 1
    • 2
    Email author
  1. 1.College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbinChina
  2. 2.Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of AgricultureHarbinChina
  3. 3.Institute of Crop Cultivation and TillageHeilongjiang Academy of Agricultural SciencesHarbinChina

Personalised recommendations