Advertisement

Euphytica

, 215:121 | Cite as

Genome-wide association mapping of root system architecture traits in common wheat (Triticum aestivum L.)

  • Peng Liu
  • Yirong Jin
  • Jindong LiuEmail author
  • Caiyun Liu
  • Hongping Yao
  • Fuyi Luo
  • Zhihui Guo
  • Xianchun Xia
  • Zhonghu HeEmail author
Article
  • 188 Downloads

Abstract

Uncovering the genetic basis and optimization of root system architecture (RSA) traits are crucial for modern wheat breeding. Genome-wide association mapping has become a powerful approach to dissect the genetic architecture of complex quantitative traits. In the present study, RSA traits, viz. total root length (TRL), total root area, average root diameter and number of root tips in a diverse panel of 165 elite wheat cultivars from the Yellow and Huai River Valley Facultative Wheat Region of China were evaluated as seedlings in hydroponic culture and in the field to identify loci significantly associated with those traits. The diverse panel was genotyped using the wheat 90 K and 660 K SNP arrays, and a genome-wide association study using a mixed linear model identified 28 and 4 loci significantly associated with RSA traits in hydroponic culture and in the field, explaining 8.8–15.6% and 8.9–12.6% of phenotypic variances, respectively. Seven loci for RSA traits co-located with known genes or quantitative trait loci (QTL), whereas the other 22 were potentially new. Linear regression between favorable alleles and RSA traits suggested that QTL pyramiding should be effective in optimizing root systems. Two candidate genes for RSA traits were identified, including genes encoding calcium dependent protein kinase and E3-Ubiquitin protein ligase. This study provides novel insights into the genetic architecture of RSA traits.

Keywords

Bread wheat GWAS Marker-assisted selection RSA traits SNP arrays 

Notes

Acknowledgements

We are grateful to Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney, for critical review of this manuscript. This work was implemented by the Key Research and Development Plan of Shandong Province (2017GNC10107), the Key Laboratory of Biology, Genetics & Breeding for Triticeae Crops, Ministry of Agriculture and Rural Affairs, the Natural Science Foundation of Shandong Province (ZR2017BC015), and the National Natural Science Foundation of China (31671691).

Supplementary material

10681_2019_2452_MOESM1_ESM.xlsx (26 kb)
Supplementary material 1 (XLSX 25 kb)
10681_2019_2452_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)
10681_2019_2452_MOESM3_ESM.docx (12 kb)
Supplementary material 3 (DOCX 11 kb)
10681_2019_2452_MOESM4_ESM.xlsx (26 kb)
Supplementary material 4 (XLSX 25 kb)
10681_2019_2452_MOESM5_ESM.xlsx (15 kb)
Supplementary material 5 (XLSX 14 kb)
10681_2019_2452_MOESM6_ESM.docx (1.4 mb)
Supplementary material 6 (DOCX 1431 kb)

References

  1. An DG, Su JY, Liu QY, Li B, Jing RL, Li JY, Li ZS (2006) Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284:73–84CrossRefGoogle Scholar
  2. Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821CrossRefGoogle Scholar
  3. Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753CrossRefGoogle Scholar
  4. Bellucci A, Torp AM, Bruun S, Magid J, Andersen SB, Rasmussen SK (2015) Association mapping in scandinavian winter wheat for yield, plant height, and traits important for second-generation bioethanol production. Front Plant Sci 6:1046CrossRefGoogle Scholar
  5. Biscarini F, Cozzi P, Casella L, Riccardi P, Vattari A, Orasen G, Perrini R, Tacconi G, Tondelli A, Biselli C, Cattivelli L, Spindel J, McCouch S, Abbruscato P, Valé G, Piffanelli P, Greco R (2016) Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS ONE 11:e0155425CrossRefGoogle Scholar
  6. Bishopp A, Lynch JP (2015) The hidden half of crop yields. Nat Plants 1:15117CrossRefGoogle Scholar
  7. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL. Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  8. Cane MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, Tuberosa R (2014) Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breeding 34:1629–1645CrossRefGoogle Scholar
  9. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572CrossRefGoogle Scholar
  10. Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A (2009) E3 ubiquitin ligases and plant innate immunity. J Exp Bot 60:1123–1132CrossRefGoogle Scholar
  11. Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM (2017) Utilization of a wheat 660 K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep-UK 7:3788CrossRefGoogle Scholar
  12. Cyr DM, Höhfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27:368–375CrossRefGoogle Scholar
  13. de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481CrossRefGoogle Scholar
  14. Deshmukh V, Mankar SP, Muthukumar C, Divahar P, Bharathi A, Thomas HB, Ashish R, Reena S, Poornima R, Senthivel S, Chandra BR (2018) Genome-wide consistent molecular markers associated with phenology, plant production and root traits in diverse rice (Oryza sativa L.) accessions under drought in rainfed target populations of the environment. Curr Sci India 114:329–340CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  16. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefGoogle Scholar
  17. Gargantini PR, Gonzalez-Rizzo S, Chinchilla S, Raices M, Giammaria V, Ulloa RM, Frugier F, Crespi MD (2006) A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant J 48:843–856CrossRefGoogle Scholar
  18. Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB (2014) Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE 9:e108179CrossRefGoogle Scholar
  19. Hawkesford MJ (2014) Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci 59:276–283CrossRefGoogle Scholar
  20. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32Google Scholar
  21. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161CrossRefGoogle Scholar
  22. Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington JM, Booth A, Shirley N, Burton RA, Fincher GB, Waugh R (2014) A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2- row Spring and Winter barleys. BMC Genom 15:907CrossRefGoogle Scholar
  23. Iannucci A, Marone D, Russo MA, Vita PD, Miullo V, Ferragonio P, Blanco A, Gadaleta A, Mastrangelo AM (2017) Mapping QTL for root and shoot morphological traits in a durum wheat × T. dicoccum segregating population at seedling stage. Int J Genom 2017:6876393Google Scholar
  24. Ivashuta S, Liu J, Lohar DP (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921CrossRefGoogle Scholar
  25. Ju C, Buresh RJ, Wang Z, Zhang H, Liu L, Yang J, Zhang J (2015) Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res 175:47–55CrossRefGoogle Scholar
  26. Kabir MR, Liu G, Guan PF, Wang F, Khan AA, Ni ZF, Yao YY, Hu ZR, Xin MM, Peng HR (2015) Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica 206:175–190CrossRefGoogle Scholar
  27. Liu X, Li R, Chang X, Jing R (2013) Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 189:51–66CrossRefGoogle Scholar
  28. Liu JD, He ZH, Rasheed A, Wen WE, Yan J, Zhang PZ, Wan YX, Zhang Y, Xie CJ, Xia XC (2017) Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol 17:220CrossRefGoogle Scholar
  29. Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55:181–188CrossRefGoogle Scholar
  30. Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 (Bethesda) 5(3):449–465CrossRefGoogle Scholar
  31. Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67:1161–1178CrossRefGoogle Scholar
  32. Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L.) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109CrossRefGoogle Scholar
  33. Marcotuli I, Houston K, Waugh R, Fincher GB, Burton RA, Blanco A, Gadaleta A (2015) Genome-wide association mapping for arabinoxylan content in a collection of tetraploid wheats. PLoS ONE 10:0132787CrossRefGoogle Scholar
  34. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251CrossRefGoogle Scholar
  35. Mu X, Chen F, Wu Q, Chen Q, Wang J, Yuan L, Mi G (2015) Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron 63:55–61CrossRefGoogle Scholar
  36. Narayanan S, Mohan A, Gill KS, Prasad PV (2014) Variability of root traits in spring wheat germplasm. PLoS ONE 9:e100317CrossRefGoogle Scholar
  37. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113CrossRefGoogle Scholar
  38. Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genom 16:47CrossRefGoogle Scholar
  39. Paez-Garcia A, Motes CM, Scheible WR, Chen R, Blancaflor EB, Monteros MJ (2015) Root traits and phenotyping strategies for plant improvement. Plants 4:334–355CrossRefGoogle Scholar
  40. Park GG, Park JJ, Yoon JM, Yu SN, An GH (2010) A RING finger E3 ligase gene, Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74:467–478CrossRefGoogle Scholar
  41. Petrarulo M, Marone D, Ferragonio P, Cattivelli L, Rubiales D, Vita PD, Mastrangelo AM (2015) Genetic analysis of root morphological traits in wheat. Mol Genet Genom 290:785–806CrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181CrossRefGoogle Scholar
  43. Rahnama A, Munns R, Poustini K, Watt M (2011) A screening method to identify genetic variation in root growth response to a salinity gradient. J Exp Bot 62:69–77CrossRefGoogle Scholar
  44. Rasheed A, Xia XC, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi AM, He ZH (2014) Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol 14:128CrossRefGoogle Scholar
  45. Ren R, He X, Liu D, Li J, Zhao X, Li B, Li Z (2012) Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol Breed 30:139–148CrossRefGoogle Scholar
  46. Sanchez DL, Liu S, Ibrahim R, Blanco M, Lübberstedt T (2018) Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci 268:30–38CrossRefGoogle Scholar
  47. Sanguineti MC, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R (2007) Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol 151:291–305CrossRefGoogle Scholar
  48. Smith S, Smet ID (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc B 367:1441–1452CrossRefGoogle Scholar
  49. Song L, Prince S, Valliyodan B, Joshi T, Santos JV, Wang JJ, Lin L, Wan JR, Wang YQ, Xu D, Nguyen HT (2016) Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genom 17:57CrossRefGoogle Scholar
  50. Su YH, Mcgrath SP, Zhao FJ (2009) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34CrossRefGoogle Scholar
  51. Sun CW, Zhang FY, Yan XF, Zhang XF, Dong ZD, Cui DQ, Chen F (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the yellow and Huai Valley of China. Plant Biotechnol J 8:953–969CrossRefGoogle Scholar
  52. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of the overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712CrossRefGoogle Scholar
  53. Wang SC, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Guedira GB, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploidy wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefGoogle Scholar
  54. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  55. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160CrossRefGoogle Scholar
  56. Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9:e105593CrossRefGoogle Scholar
  57. Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695CrossRefGoogle Scholar
  58. Zhu CS, Gore M, Buckler ES, Status YJM (2008) Prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Peng Liu
    • 1
  • Yirong Jin
    • 1
  • Jindong Liu
    • 2
    Email author
  • Caiyun Liu
    • 1
  • Hongping Yao
    • 3
  • Fuyi Luo
    • 3
  • Zhihui Guo
    • 1
  • Xianchun Xia
    • 4
    • 5
  • Zhonghu He
    • 4
    • 5
    Email author
  1. 1.Dezhou Academy of Agricultural SciencesDezhouChina
  2. 2.Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural Sciences (CAAS)ShenzhenChina
  3. 3.Dezhou Bureau of AgricultureDezhouChina
  4. 4.Institute of Crop Sciences, National Wheat Improvement CenterChinese Academy of Agricultural Sciences (CAAS)BeijingChina
  5. 5.International Maize and Wheat Improvement Center (CIMMYT) China OfficeBeijingChina

Personalised recommendations