, 215:108 | Cite as

Mapping of quantitative trait loci (QTL) for resistance against Zymoseptoria tritici in the winter spelt wheat accession HTRI1410 (Triticum aestivum subsp. spelta)

  • Frances Karlstedt
  • Doris KopahnkeEmail author
  • Dragan Perovic
  • Andreas Jacobi
  • Klaus Pillen
  • Frank Ordon


Zymoseptoria tritici, the causal agent of Septoria tritici blotch (STB) causes yield losses in wheat of up to 40%, globally. Growing of resistant cultivars is the most cost effective and environmentally friendly way to avoid these losses. Therefore, there is a need to identify new resistances in gene bank accessions and to get information on the genetics of resistance followed by the development of molecular markers for the efficient deployment of these resistances in wheat breeding. In extensive screening programs for resistance, the spelt wheat gene bank accession HTRI1410 turned out to be resistant to Zymoseptoria tritici in field conditions. In order to get information on the genetics of the STB resistance in HTRI1410, a DH population consisting of 135 lines derived from crosses of HTRI1410 to three susceptible cultivars was developed. Significant genotypic differences and a quantitative variation for the reaction to Zymoseptoria tritici was observed. Based on these phenotypic data and a genetic map comprising 714 90K iSelect derived SNP markers four quantitative trait loci on chromosomes 5A, 4B and 7B, explaining 8.5–17.5% of the phenotypic variance were identified.


Zymoseptoria tritici Triticum aestivum subsp. spelta Septoria tritici blotch Resistance QTL 90K iSelect 



We thank the Federal Ministry for Food and Agriculture (BMEL, FKZ 2814601713) for funding this project and Ms. Kersten Naundorf and Ms. Cornelia Helmund for excellent technical assistance. We acknowledge Andreas Benke from Strube Research for his support in statistical analyses.

Supplementary material

10681_2019_2432_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)


  1. Abdi H, Williams LJ (2010) Principal component analysis. WIREs Comput Stat 2:433–459. CrossRefGoogle Scholar
  2. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arraiano LS, Brading PA, Brown JKM (2001) A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol 50:339–346. CrossRefGoogle Scholar
  4. Badea A, Eudes F, Graf RJ, Laroche A, Gaudet DA, Sadasivaiah RS (2008) Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to fusarium head blight. Euphytica 164:803–819. CrossRefGoogle Scholar
  5. Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brown JKM, Kema GHJ, Forrer H-R, Verstappen ECP, Arraiano LS, Brading PA, Foster EM, Fried PM, Jenny E (2001) Resistance of wheat cultivars and breeding lines to septoria tritici blotch caused by isolates of Mycosphaerella graminicola in field trials. Plant Pathol 50:325–338. CrossRefGoogle Scholar
  7. Brown JKM, Chartrain L, Lasserre-Zuber P, Saintenac C (2015) Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol 79:33–41. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062. CrossRefPubMedGoogle Scholar
  9. Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M-C, Dubcovsky J (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breeding 23:23–33. CrossRefGoogle Scholar
  10. Chartrain L, Brading PA, Widdowson JP, Brown JKM (2004) Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology 94:497–504. CrossRefPubMedGoogle Scholar
  11. Chen H, He H, Zhou F, Yu H, Deng XW (2013) Development of genomics-based genotyping platforms and their applications in rice breeding. Curr Opin Plant Biol 16:247–254. CrossRefPubMedGoogle Scholar
  12. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. CrossRefGoogle Scholar
  13. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392. CrossRefPubMedGoogle Scholar
  14. Cools HJ, Fraaije BA (2008) Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola. Pest Manag Sci 64:681–684. CrossRefPubMedGoogle Scholar
  15. Cornish PS, Baker GR, Murray GM (1990) Physiological responses of wheat (Triticum aestivum) to infection with Mycosphaerella graminicola causing Septoria tritici blotch. Aust J Agric Res 41:317. CrossRefGoogle Scholar
  16. Cowger C, Hoffer ME, Mundt CC (2000) Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathol 49:445–451. CrossRefGoogle Scholar
  17. Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dong H, Wang R, Yuan Y, Anderson J, Pumphrey M, Zhang Z, Chen J (2018) Evaluation of the potential for genomic selection to improve spring wheat resistance to fusarium head blight in the Pacific Northwest. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dreisigacker S, Wang X, Martinez Cisneros BA, Jing R, Singh PK (2015) Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Theor Appl Genet 128:2317–2329. CrossRefPubMedGoogle Scholar
  20. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Engelmann U (2014) Kartierung und züchterische Nutzung von Resistenzen gegen die Weizenblattdürre (Pyrenophora tritici-repentis). Gießen, Univ., Diss., 2014, Dissertation. Dissertationen aus dem Julius Kühn-Institut. Julius Kühn-Institut, QuedlinburgGoogle Scholar
  22. Eriksen L, Borum F, Jahoor A (2003) Inheritance and localisation of resistance to Mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor Appl Genet 107:515–527. CrossRefPubMedGoogle Scholar
  23. Eyal Z, Scharen AL, Precott M, van Ginkel M (1987) The septoria diseases of wheat: concepts and methods of disease management: CIMMYT, Mexico. CIMMYT, MexicoGoogle Scholar
  24. Ghaffary SM, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ (2012) New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 124:125–142. CrossRefGoogle Scholar
  25. Gladders P, Paveley ND, Barrie IA, Hardwick NV, Hims MJ, Langton S, Taylor MC (2001) Agronomic and meteorological factors affecting the severity of leaf blotch caused by Mycosphaerella graminicola in commercial wheat crops in England. Ann Appl Biol 138:301–311. CrossRefGoogle Scholar
  26. Goudemand E, Laurent V, Duchalais L, Tabib Ghaffary SM, Kema GHJ, Lonnet P, Margalé E, Robert O (2013) Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Mol Breed 32:563–584. CrossRefGoogle Scholar
  27. Grieger A, Lamari L, Brûlé-Babel A (2005) Physiologic variation in Mycosphaerella graminicola from western Canada. Can J Plant Pathol 27(1):71–77CrossRefGoogle Scholar
  28. Gutierrez-Gonzalez JJ, Mascher M, Poland J, Muehlbauer GJ (2019) Dense genotyping-by-sequencing linkage maps of two Synthetic W7984 × Opata reference populations provide insights into wheat structural diversity. Sci Rep 9:1793. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Holušová K, Vrána J, Šafář J, Šimková H, Balcárková B, Frenkel Z, Darrier B, Paux E, Cattonaro F, Berges H, Letellier T, Alaux M, Doležel J, Bartoš J (2017) Physical map of the short arm of bread wheat chromosome 3D. Plant Genome. CrossRefPubMedGoogle Scholar
  30. IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. CrossRefGoogle Scholar
  31. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, Yang H, Liu X, He Z, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95. CrossRefGoogle Scholar
  32. Kelm C, Ghaffary SMT, Bruelheide H, Röder MS, Miersch S, Eberhard Weber W, Kema GHJ, Saal B (2012) The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population Solitär × Mazurka. Mol Breed 29:813–830. CrossRefGoogle Scholar
  33. Kema GHJ (1992) Resistance in spelt wheat to yellow rust. Euphytica 63(3):207–217Google Scholar
  34. Kema GH, van Silfhout CH (1997) Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola Pathosystem III. Comparative seedling and adult plant experiments. Phytopathology 87:266–272. CrossRefPubMedGoogle Scholar
  35. Kilian B, Martin W, Salamini F (2010) Genetic diversity, evolution and domestication of wheat and barley in the fertile crescent. In: Glaubrecht M (ed) Evolution in action: case studies in adaptive radiation, speciation and the origin of biodiversity. Springer, Berlin, pp 137–166CrossRefGoogle Scholar
  36. Klöhn (2011) Populationsdynamische Erhebungen von Weizenpathogenen zur Entwicklung eines lernfähigen, telemetriefähigen Gerätesystems zur Pflanzenschutzoptimierung anhand des Modellpathogens Septoria tritici. Cuvillier VerlagGoogle Scholar
  37. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175. CrossRefGoogle Scholar
  38. Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32:411–423CrossRefGoogle Scholar
  39. Kosellek C, Pillen K, Nelson JC, Weber WE, Saal B (2013) Inheritance of field resistance to Septoria tritici blotch in the wheat doubled-haploid population Solitär × Mazurka. Euphytica 194:161–176. CrossRefGoogle Scholar
  40. Lacko-Bartošová M, Korczyk-Szabó J (2011) Indirect baking quality and rheological properties of spelt wheat (Triticum spelta L.). Res J Agric Sci 43(1):73–78Google Scholar
  41. Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M-C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90. CrossRefPubMedGoogle Scholar
  42. Maccaferri M, Cane’ MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F, Knox R, Pozniak CJ, Clarke JM, Fahima T, Dubcovsky J, Xu S, Ammar K, Karsai I, Vida G, Tuberosa R (2014) A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genom 15:873. CrossRefGoogle Scholar
  43. Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N’Diaye A, Xu S, Tuberosa R (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13:648–663. CrossRefPubMedGoogle Scholar
  44. Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932CrossRefGoogle Scholar
  45. McVey DV (1990) Resistance to wheat stem rust in spring spelts. Plant Dis 74:966. CrossRefGoogle Scholar
  46. Mohler V, Singh D, Singrün C, Park RF (2012) Characterization and mapping of Lr65 in spelt wheat ‘Altgold Rotkorn’. Plant Breed 131:252–257. CrossRefGoogle Scholar
  47. Moll E, Flath K (2000) Die SAS-Applikation RESI zur Bewertung der partiellen Resistenz von GetreidesortimentenGoogle Scholar
  48. Naz AA, Klaus M, Pillen K, Léon J (2015) Genetic analysis and detection of new QTL alleles for Septoria tritici blotch resistance using two advanced backcross wheat populations. Plant Breed 134:514–519CrossRefGoogle Scholar
  49. NCBI. Accessed 20 June 2018
  50. Nielsen NH, Backes G, Stougaard J, Andersen SU, Jahoor A (2014) Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS ONE 9:e94000. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ooijen Van (2004) MapQTL ® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., WageningenGoogle Scholar
  52. Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199. CrossRefPubMedGoogle Scholar
  53. Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474. CrossRefPubMedGoogle Scholar
  54. Perovic D, Förster J, Devaux P, Hariri D, Guilleroux M, Kanyuka K, Lyons R, Weyen J, Feuerhelm D, Kastirr U, Sourdille P, Röder M, Ordon F (2009) Mapping and diagnostic marker development for Soil-borne cereal mosaic virus resistance in bread wheat. Mol Breed 23:641–653. CrossRefGoogle Scholar
  55. Pietravalle S, Shaw MW, Parker SR, van den Bosch F (2003) Modeling of relationships between weather and Septoria tritici epidemics on winter wheat: a critical approach. Phytopathology 93:1329–1339. CrossRefPubMedGoogle Scholar
  56. Pillinger C, Evans EJ, Whaley JM, Knight SM, Poole N (2004) Managing early-drilled winter wheat: seed rates, varieties and disease control. HGCA Project Report
  57. Ponomarenko A, Goodwin SB, Kema GHJ (2011) Septoria tritici blotch (STB) of wheat. Plant Health Instr. CrossRefGoogle Scholar
  58. Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26:57–69. CrossRefPubMedPubMedCentralGoogle Scholar
  59. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  60. Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T (2013) The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 14:R138. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Risser P (2010) Mapping of quantitative-trait loci (QTL) for adult-plant resistance to Septoria tritici in five wheat populations (Triticum aestivum L.). Stuttgart, Germany: University of Hohenheim, PhD thesis.
  62. Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T (2011) Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology 101:1209–1216. CrossRefPubMedGoogle Scholar
  63. Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40:792. CrossRefGoogle Scholar
  64. Schilly A, Risser P, Ebmeyer E, Hartl L, Reif JC, Würschum T, Miedaner T (2011) Stability of adult-plant resistance to Septoria tritici blotch in 24 European winter wheat varieties across nine field environments. J Phytopathol. CrossRefGoogle Scholar
  65. Serfling A, Kopahnke D, Habekuss A, Novakazi F, Ordon F (eds) (2017) Achieving sustainable cultivation of wheat: wheat diseases, pests and weeds wheat diseases: an overview. Volume 1 Part 3. Burleigh Dodds Science Publishing, CambridgeGoogle Scholar
  66. Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078. CrossRefGoogle Scholar
  67. Shariflou MR, Hassani ME, Sharp PJ (2001) A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-D1 gene of wheat. Plant Breed 120:121–124. CrossRefGoogle Scholar
  68. Sharp PJ, Johnston S, Brown G, McIntosh RA, Pallotta M, Carter M, Bariana HS, Khatkar S, Lagudah ES, Singh RP, Khairallah M, Potter R, Jones MGK (2001) Validation of molecular markers for wheat breeding. Aust J Agric Res 52:1357. CrossRefGoogle Scholar
  69. Shi JR, Xu DH, Yang HY, Lu QX, Ban T (2008) DNA marker analysis for pyramided of Fusarium head blight (FHB) resistance QTLs from different germplasm. Genetica 133:77–84. CrossRefPubMedGoogle Scholar
  70. Simon MR, Khlestkina EK, Castillo NS, Börner A (2010) Mapping quantitative resistance to septoria tritici blotch in spelt wheat. Eur J Plant Pathol 128:317–324. CrossRefGoogle Scholar
  71. Simón MR, Worland AJ, Struik PC (2005a) Chromosomal location of genes encoding for resistance to septoria tritici blotch (Mycosphaerella graminicola) in substitution lines of wheat. NJAS Wagening J Life Sci 53:113–129. CrossRefGoogle Scholar
  72. Simón MR, Perelló AE, Cordo CA, Larrán S, van der Putten PEL, Struik PC (2005b) Association between Septoria tritici blotch, plant height, and heading date in wheat. Agron J 97:1072. CrossRefGoogle Scholar
  73. Skrabanja V, Kovac B, Golob T, Liljeberg Elmståhl HGM, Björck IME, Kreft I (2001) Effect of spelt wheat flour and kernel on bread composition and nutritional characteristics. J Agric Food Chem 49:497–500. CrossRefPubMedGoogle Scholar
  74. Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33. CrossRefPubMedGoogle Scholar
  75. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356. CrossRefGoogle Scholar
  76. Sun Q, Wei Y, Ni Z, Xie C, Yang T (2002) Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breed 121:539–541. CrossRefGoogle Scholar
  77. Tamburic-Ilincic L, Falk D, Schaafsma A (2011) Fusarium ratings in Ontario winter wheat performance trial (OWWPT) using an index that combines Fusarium head blight symptoms and deoxynivalenol levels. Czech J Genet Plant Breed 47:S115–S122. CrossRefGoogle Scholar
  78. Tyagi S, Mir RR, Kaur H, Chhuneja P, Ramesh B, Balyan HS, Gupta PK (2014) Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.). Mol Breed 34:167–175. CrossRefGoogle Scholar
  79. University of Bristol (2012) School of Biological Sciences. Accessed 25 June 2018
  80. URGI (2018a) Unité de Recherche Génomique Info. Accessed 25 June 2018
  81. URGI (2018b) Unité de Recherche Génomique Info. Accessed 25 June 2018
  82. Vagndorf N, Nielsen NH, Edriss V, Andersen JR, Orabi J, Jørgensen LN, Jahoor A, Pillen K (2017) Genomewide association study reveals novel quantitative trait loci associated with resistance towards Septoria tritici blotch in North European winter wheat. Plant Breed 136:474–482. CrossRefGoogle Scholar
  83. Van Ooijen JW (2006) JoinMap®4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  84. Van Poecke RMP, Maccaferri M, Tang J, Truong HT, Janssen A, van Orsouw NJ, Salvi S, Sanguineti MC, Tuberosa R, van der Vossen EAG (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotechnol J 11:809–817. CrossRefPubMedGoogle Scholar
  85. Verreet and Klink (2010) “Die Biologie der Schadpilze”: “Septoria-Blattdürre”, (DVD-Reihe)Google Scholar
  86. von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590. CrossRefGoogle Scholar
  87. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. CrossRefGoogle Scholar
  88. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X (2017) A high-density consensus map of common wheat integrating four mapping populations scanned by the 90 K SNP array. Front Plant Sci 8:1389. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wheat Initiative (2018)
  91. Wicker T, Krattinger SG, Lagudah ES, Komatsuda T, Pourkheirandish M, Matsumoto T, Cloutier S, Reiser L, Kanamori H, Sato K, Perovic D, Stein N, Keller B (2009) Analysis of intraspecies diversity in wheat and barley genomes identifies breakpoints of ancient haplotypes and provides insight into the structure of diploid and hexaploid triticeae gene pools. Plant Physiol 149:258–270. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wiwart M (2004) Response of some cultivars of spring spelt (Triticum spelta) to Fusarium culmorum infection. Die Bodenkultur 29–36Google Scholar
  93. Wu Y, Close TJ, Lonardi S (2008) On the accurate construction of consensus genetic maps. Comput Syst Bioinform Conf 7:285–296Google Scholar
  94. Yi X, Jiang Z, Hu W, Zhao Y, Bie T, Gao D, Liu D, Wu R, Cheng X, Cheng S, Zhang Y (2017) Development of a kompetitive allele-specific PCR marker for selection of the mutated Wx-D1d allele in wheat breeding. Plant Breed 136:460–466. CrossRefGoogle Scholar
  95. Zeng Q, Wu J, Huang S, Yuan F, Liu S, Wang Q, Mu J, Yu S, Chen L, Han D, Kang Z (2019) SNP-based linkage mapping for validation of adult plant stripe rust resistance QTL in common wheat cultivar Chakwal 86. Crop J 122:122. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Frances Karlstedt
    • 1
  • Doris Kopahnke
    • 1
    Email author
  • Dragan Perovic
    • 1
  • Andreas Jacobi
    • 2
  • Klaus Pillen
    • 3
  • Frank Ordon
    • 1
  1. 1.Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress ToleranceJulius Kuehn-Institute (JKI)QuedlinburgGermany
  2. 2.Strube Research GmbH & Co. KGSöllingenGermany
  3. 3.Institute of Agricultural and Nutritional SciencesMartin Luther University Halle-Wittenberg (MLU)Halle (Saale)Germany

Personalised recommendations