Advertisement

Euphytica

, 215:70 | Cite as

Recent genetic research on Japanese soybeans in response to the escalation of food use worldwide

  • Kyuya Harada
  • Akito KagaEmail author
Review
  • 7 Downloads

Abstract

Soybeans are an important ingredient in traditional foods of Japan, such as tofu, natto, miso, boiled beans, soy sauce, and edamame. Japanese soybeans have been subjected to selection for use as a food for many years and have different characteristics from those of oilseed soybeans. Useful genomic resources for studying Japanese soybeans, such as high-density linkage maps, chromosome segment substitution lines, genome sequences, high-density mutant libraries, and germplasm sets, have been developed. Because traditional foods made from Japanese soybeans are highly influenced by seed characteristics, comprehensive studies have been conducted on seed quality and composition using natural and mutant genetic resources, and several new varieties with special seed characteristics have been successfully developed. Recent advances in the genetic characterization of agriculturally important traits in Japanese soybeans, including plant type, physiological characteristics, and resistance to biotic and abiotic stresses will contribute to marker-assisted selection of new soybean varieties.

Keywords

Japanese soybean Genetic resource Quantitative trait locus Marker-assisted selection Map-based cloning Linkage map 

Notes

Acknowledgements

We thank Dr. Masatsugu Hashiguchi, Dr. Satoshi Watanabe, and Dr. Fukuhiro Yamasaki for their kind assistance in preparing the statistics for the genetic resources in the National BioResource Project, the figure for the flowering network, the statistics of the NARO Genebank, and the picture for the soybean mini-core collection, respectively.

Supplementary material

10681_2019_2396_MOESM1_ESM.xlsx (25 kb)
Supplementary material 1 (XLSX 24 kb)

References

  1. Abe J, Xu DH, Suzuki Y, Kanazawa A, Shimamoto Y (2003) Soybean germplasm pools in Asia revealed by SSR. Theor Appl Genet 106:445–453PubMedCrossRefGoogle Scholar
  2. Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nutr 38:183–187CrossRefGoogle Scholar
  3. Akazawa T, Egashira H (2005) Dadachamame (in Japanese). J Jpn Soc Edamame Sci 3:2–10Google Scholar
  4. Anai T (2012) Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. Breed Sci 61:462–467PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anai T, Yamada T, Hideshima R, Kinoshita T, Rahman SM, Takagi Y (2008) Two high-oleic-acid soybean mutants, M23 and KK21, have disrupted microsomal omega-6 fatty acid desaturase, encoded by GmFAD2-1a. Breed Sci 58:447–452CrossRefGoogle Scholar
  6. Arikit S, Yoshihashi T, Wapchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A (2011a) Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). Plant Biotechnol J 9:75–87PubMedCrossRefGoogle Scholar
  7. Arikit S, Yoshihashi T, Wanchana S, Tanya P, Juwarttanasomran R, Srinives P, Vanavichit A (2011b) A PCR-based marker for a locus conferring aroma in vegetable soybean (Glycine max L.). Theor Appl Genet 122:311–316PubMedCrossRefGoogle Scholar
  8. Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J et al (2015) A population structure and genome-wide association analysis on the USDA soybean germplasm collection. The Plant Genome 8.  https://doi.org/10.3835/plantgenome2015.04.0024 CrossRefGoogle Scholar
  9. Benitez ER, Hajika M, Yamada T, Takahashi K, Oki N, Yamada N et al (2010) A major QTL controlling seed cadmium accumulation in soybean. Crop Sci 50:1728–1734CrossRefGoogle Scholar
  10. Cao D, Takeshima R, Zhao C, Liu B, Abe J, Kong F (2017) Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot 68:1873–1884PubMedCrossRefGoogle Scholar
  11. Chinchest A, Nakeeraks P (1990) Mutation breeding of blackgram (Vigna mungo). Mungbean Meet 90:43–46Google Scholar
  12. Cooper JK, Till BJ, Laport RG, Darlow MG, Kleffner JM, Jamai A et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol.  https://doi.org/10.1186/1471-2229-8-9 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cornelious B, Chen P, Chen Y, de Leon N, Shannon JG, Wang D (2005) Identification water-logging tolerance in soybean. Mol Breed 16:103–112CrossRefGoogle Scholar
  14. Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipo-chittooligosaccharidic Nod factors in legumes. Trends Plant Sci 6:24–30PubMedCrossRefGoogle Scholar
  15. Davies CS, Nielsen NC (1986) Genetic analysis of a null-allele for lipoxygenase-2 in soybean. Crop Sci 26:460–462CrossRefGoogle Scholar
  16. Dissanayaka A, Rodriguez TO, Di S, Yan F, Githiri SM, Rodas FR et al (2016) Quantitative trait locus mapping of soybean maturity gene E5. Breed Sci 66:407–415PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dwiyanti MS, Ujiie A, Thuy LTB, Yamada T, Kitamura K (2007) Genetic analysis of high α-tocopherol content in soybean seeds. Breed Sci 57:23–28CrossRefGoogle Scholar
  18. Dwiyanti MS, Yamada T, Sato M, Abe J, Kitamura K (2011) Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds. BMC Plant Biol 11:152PubMedPubMedCentralCrossRefGoogle Scholar
  19. Faruque OM, Miwa H, Yasuda M, Fuji Y, Kaneko T, Sato S, Okazaki S (2015) Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl Environ Microbiol 81:6710–6717PubMedPubMedCentralCrossRefGoogle Scholar
  20. Francisco PB, Akao S (1993) Autoregulation and nitrate inhibition of nodule formation in soybean cv. Enrei and its nodulation mutants. J Exp Bot 44:547–553CrossRefGoogle Scholar
  21. Fukui J, Arai M (1951) Ecological studies on Japanese soy-bean varieties. l. Classification of soy-bean varieties on the basis of the days from germination to blooming and from blooming to ripening with special reference to their geographic differentiation. Jpn J Breed 1:27–39CrossRefGoogle Scholar
  22. Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861PubMedCrossRefGoogle Scholar
  23. Funatsuki H, Suzuki M, Hirose A, Inaba H, Yamada T, Hajika M et al (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc Natl Acad Sci USA 111:17797–17802PubMedCrossRefGoogle Scholar
  24. Fushimi T, Masuda R (2001) 2-Acetyl-1-pyrroline concentration of the aromatic vegetable soybean “Dadacha-Mame”. In: Proceeding of second international vegetable soybean conference, Washington State University, Tacoma, Washington, 39Google Scholar
  25. Hajika M, Igita K, Kitamura K (1991) A line lacking all the seed lipoxygenase isozymes in soybean [Glycine max (L.) Merrill] induced by gamma-ray irradiation. Jpn J Breed 41:507–509CrossRefGoogle Scholar
  26. Hajika M, Takahashi M, Igita M (1996) A new genotype of 7S globulin (β-conglycinin) detected in wild soybean (Glycine soja Sieb. et Zucc). Breed Sci 46:385–386Google Scholar
  27. Hajika M, Takahashi M, Sakai S, Matsunaga R (1998) Dominant inheritance of a trait lacking β-conglycinin detected in a wild soybean line. Breed Sci 48:383–386Google Scholar
  28. Hajika M, Takahashi M, Igita K, Sakai S, Nakazawa Y (2002) A new soybean variety “Ichihime”. Bull Natl Agric Res Cent Kyushu Okinawa Reg 40:79–94Google Scholar
  29. Hajika M, Funatsuki H, Yamada T, Takahashi K, Hishinuma A, Hirata K et al (2016) Development of a new pod dehiscence-resistant soybean cultivar ‘Sachiyutaka A1 gou’. Bull NARO Inst Crop Sci 16:1–34Google Scholar
  30. Han VP, Teng WL, Wang Y, Zhao X, Wu L, Li DM (2015) Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breed 134:300–309CrossRefGoogle Scholar
  31. Harada K, Xia Z (2004) Soybean genomics: efforts to reveal the complex genome. Breed Sci 54:215–224CrossRefGoogle Scholar
  32. Harada K, Watanabe S, Xia Z, Tsubokura Y, Yamanaka N, Anai T (2011) Positional cloning of the responsible genes for maturity loci E1, E2, and E3 in soybean. In: D. Krezhova (ed.) “Soybean-genetics and novel techniques for yield enhancement”. IntechOpen, Croatia, pp 51–76Google Scholar
  33. Hayashi M, Saeki Y, Haga M, Harada K, Kouchi H, Umehara Y (2012) Rj (rj) genes involved in nitrogen-fixing root nodule formation in soybean. Breed Sci 61:544–553PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T et al (2014) A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean. Plant Cell Physiol 55:1679–1689PubMedCrossRefGoogle Scholar
  35. Hildebrand DF, Hymowitz T (1981) Two soybean genotypes lacking lipoxygenase-1. J Am Oil Chem Soc 58:583–586CrossRefGoogle Scholar
  36. Hirata K, Masuda R, Tsubokura Y, Yasui T, Yamada T, Takahashi K et al (2014) Identification of quantitative trait loci associated with boiled seed hardness in soybean. Breed Sci 64:362–370PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hirota T, Yoshida S, Sawada T, Nakamura Y (2018) Starch properties affecting maltose production ability in vegetative black soybean seeds (edamame) with different maturation period. Hort J 87:236–249CrossRefGoogle Scholar
  38. Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A et al (2007) Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res 14:271–281PubMedCrossRefGoogle Scholar
  39. Hong JS, Masuda C, Nakano M, Abe J, Ueda I (2003) Adaptation of cucumber mosaic virus soybean strains (SSVs) to cultivated and wild soybeans. Theor Appl Genet 107:49–53PubMedCrossRefGoogle Scholar
  40. Hoshino T, Takagi Y, Anai T (2010) Novel GmFAD2-1b mutant alleles created by reverse genetics induce marked elevation of oleic acid content in soybean seeds in combination with GmFAD2-1a mutant alleles. Breed Sci 60:419–425CrossRefGoogle Scholar
  41. Hoshino T, Watanabe S, Takagi Y, Anai T (2014) A novel GmFAD3-2a mutant allele developed through TILLING reduces α-linolenic acid content in soybean seed oil. Breed Sci 64:371–377PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hwang T-Y, Sayama T, Takahashi M, Takada Y, Nakamoto Y, Funatsuki H et al (2009) High-density integrated linkage map based on SSR markers in soybean. DNA Res 16:213–225PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hymowitz T (1970) On the domestication of the soybean. Econ Bot 24:408–421CrossRefGoogle Scholar
  44. Hymowitz T, Kaizuma K (1981) Soybean seed protein electrophoresis profiles from 15 Asian countries or regions: hypotheses on paths of dissemination of soybeans from China. Econ Bot 35:10–23CrossRefGoogle Scholar
  45. Hyten D, Choi I-Y, Song Q, Specht JE, Carter TE, Shoemaker RC et al (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968CrossRefGoogle Scholar
  46. Imai S (2014) Effect of green soybean extracts on allergy and inflammation. Nippon Shokuhin Kagaku Kogaku Kaishi 61:625–631CrossRefGoogle Scholar
  47. Ishikawa G, Takada Y, Nakamura T (2006) A PCR-based method to test for the presence or absence of β-conglycinin α’ - and α-subunits in soybean seeds. Mol Breed 17:365–374CrossRefGoogle Scholar
  48. Jang SJ, Sato M, Sato K, Jitsuyama Y, Fujino K, Mori H et al (2015) A single-nucleotide polymorphism in an endo-1,4-β-glucanase gene controls seed coat permeability in soybean. PLoS ONE 10:e0128527PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jegadeesan S, Yu K, Poysa V, Gawalko E, Morrison MJ, Shi C et al (2010) Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor Appl Genet 121:283–294PubMedCrossRefGoogle Scholar
  50. Jeong N, Suh SJ, Kim MH, Lee S, Moon JK, Kim HS et al (2012) Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24:4807–4818PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jiang B, Nan H, Gao Y, Tang L, Yue Y, Lu S et al (2014) Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE 9:e106042PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jiang CJ, Sugano S, Kaga A, Lee SS, Sugimoto T, Takahashi M et al (2017) Evaluation of resistance to Phytophthora sojae in soybean mini core collections using an improved assay system. Phytopathology 107:216–223PubMedCrossRefGoogle Scholar
  53. Kaga A, Shimizu T, Watanabe S, Tsubokura Y, Katayose Y, Harada K et al (2012) Evaluation of soybean germplasm conserved in NIAS Genebank and development of mini core collections. Breed Sci 61:566–592PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kanamaru K, Wang S, Abe J, Yamada T, Kitamura K (2006) Identification and characterization of wild soybean (Glycine soja Sieb. et Zucc.) strains with high lutein content. Breed Sci 56:231–234CrossRefGoogle Scholar
  55. Kasai A, Kasai K, Yumoto S, Senda M (2007) Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean: implication for inducing endogenous RNA silencing of chalcone synthase genes. Plant Mol Biol 64:467–479PubMedCrossRefGoogle Scholar
  56. Kasai A, Ohnishi S, Yamazaki H, Funatsuki H, Kurauchi T, Matsumoto T et al (2009) Molecular mechanism of seed coat discoloration induced by low temperature in yellow soybean. Plant Cell Physiol 50:1090–1098PubMedCrossRefGoogle Scholar
  57. Kasuga T, Salimath SS, Shi J, Gijzen M, Buzzell RI, Bhattacharyya MK (1997) High resolution genetic and physical mapping of molecular markers inked to the Phytophthora resistance gene Rps1-k in soybean. Mol Plant Microbe Interact 10:1035–1044CrossRefGoogle Scholar
  58. Kato S, Yumoto S, Takada Y, Kono Y, Shimada S, Sakai T et al (2007) A new soybean cultivar “Kinusayaka” lacking lipoxygenase isozymes and group A acetyl saponin. Bull Natl Agric Res Cent Tohoku Reg 107:29–42Google Scholar
  59. Kato S, Fujii K, Yumoto S, Ishimoto M, Shiraiwa T, Sayama T et al (2015) Seed yield and its components of indeterminate and determinate lines in recombinant inbred lines of soybean. Breed Sci 65:154–160PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kato S, Takada Y, Shimamura S, Hirata K, Sayama T, Taguchi-Shiobara F et al (2016) Transfer of the Rsv3 locus from ‘Harosoy’ for resistance to soybean mosaic virus strains C and D in Japan. Breed Sci 66:319–327PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kato S, Sayama T, Takada Y, Yumoto S, Ishimoto M, Shimamura S et al (2017) Breeding of soybean lines conferred multiple disease and pest resistance by marker-assisted selection with a high-resolution PCR fragment analysis system. (2017) Bulletin NARO. Agric Res Cent Toholu Reg 119:89–106Google Scholar
  62. Kikuchi A, Tsukamoto C, Tabuchi K, Adachi T, Okubo K (1999) Inheritance and characterization of a null allele for group A acetyl saponins found in a mutant soybean (Glycine max (L.) Merrill). Breed Sci 49:167–171CrossRefGoogle Scholar
  63. Kim DH, Kim KH, Van K, KIM MY, Lee SH (2010) Fine mapping of a resistance gene to bacterial leaf pustule in soybean. Theor Appl Genet 120:1443–1450PubMedCrossRefGoogle Scholar
  64. Kitamura K, Kaizuma N (1981) Mutant strains with low levels of subunits of 7S globulin in soybean (Glycine max Merr.) seed. Jpn J Breed 31:353–359CrossRefGoogle Scholar
  65. Kitamura K, Davies CS, Kaizuma N, Nielsen NC (1983) Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Sci 23:924–927CrossRefGoogle Scholar
  66. Kitamura K, Kumagai T, Kikuchi A (1985) Inheritance of lipoxygenase-2 and genetic relationship among genes for lipoxygenase-1, -2 and -3 isozymes in soybean seeds. Jpn J Breed 35:413–420CrossRefGoogle Scholar
  67. Kitamura K, Ishimoto M, Kaizuma N (1993) Genetic relationships among genes for the subunits of soybean 11S globulin. Japan J Breed 43(Suppl. 2):159Google Scholar
  68. Kohzuma K, Sato Y, Ito H, Okuzaki A, Watanabe M, Kobayashi H et al (2017) The non-mendelian green gene in soybean encodes a small subunit of photosystem II. Plant Physiol 173:2138–2147PubMedPubMedCentralCrossRefGoogle Scholar
  69. Komatsu K, Okuda S, Takahashi M, Matsunaga R (2004) Antibiotic effect of insect-resistance soybean on common cutworm (Spodoptera litura) and its inheritance. Breed Sci 54:27–32CrossRefGoogle Scholar
  70. Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y (2005) QTL mapping of antibiosis resistance to common cutworm (Spodoptera litura Fabricius) in soybean. Crop Sci 45:2044–2048CrossRefGoogle Scholar
  71. Komatsu K, Hwang TY, Takahashi M, Sayama T, Funatsuki H, Oki N, Ishimoto M (2012) Identification of QTL controlling post-flowering period in soybean. Breed Sci 61:646–652PubMedPubMedCentralCrossRefGoogle Scholar
  72. Komatsu S, Nanjo Y, Nishimura M (2013) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteomics 79:231–250PubMedCrossRefGoogle Scholar
  73. Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S et al (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kurasch A, Hahn V, Leiser W, Vollman J, Schori A, Betrix C-A et al (2017) Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean. Plant Cell Environ.  https://doi.org/10.1111/pce.12896 CrossRefPubMedGoogle Scholar
  75. Kurosaki H, Yumoto S, Matsukawa I (2004) Correlation of cold-weather tolerance with pubescence color and flowering time in yellow hilum soybeans in Hokkaido. Breed Sci 54:303–311CrossRefGoogle Scholar
  76. Kurosaki H, Fujita S, Ohnishi S, Kosaka F, Tanaka Y, Takeuchi T et al (2017) A new soybean variety “Suzumaru R”. Bull Hokkaido Res Org Agric Exp Stn 101:1–13Google Scholar
  77. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059PubMedCrossRefGoogle Scholar
  78. Lee GH, Crawford GW, Liu L, Sasaki Y, Chen X (2011) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS ONE 6:e26720PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lee S, Freewalt KR, McHale LK, Song Q, Jun TH, Michel Michel AP et al (2015) A high-resolution linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6 K. Mol Breed.  https://doi.org/10.1007/s11032-015-0209-5 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lenis JM, Gillman JD, Lee JD, Shannon JG, Bilyeu KD (2010) Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theor Appl Genet 120:1139–1149PubMedCrossRefGoogle Scholar
  81. Liu B, Fujita T, Yan Z, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038PubMedPubMedCentralCrossRefGoogle Scholar
  82. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007PubMedPubMedCentralCrossRefGoogle Scholar
  83. Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z et al (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210PubMedPubMedCentralCrossRefGoogle Scholar
  84. Liu D, Yan Y, Fujita Y, Xu D (2018) Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci 68:442–448PubMedPubMedCentralCrossRefGoogle Scholar
  85. Matsumura Y, Sirison J, Ishi T, Matsumiya K (2017) Soybean lipophilic proteins-Origin and functional properties as affected by interaction with storage proteins. Curr Opin Colloid Interface Sci 28:120–128CrossRefGoogle Scholar
  86. Miyazaki S, Carter TE, Shiina T, Chibana T, Miyashita S, Kunihiro Y (1995) Identification of representative accessions of old cultivars that contribute to the pedigree of modern Japanese soybean varieties, based on passport data analysis. Misc Publ Natl Ins Agrobiol Resour 8:18–37Google Scholar
  87. Morisaki A, Yamada N, Yamanaka S, Matsui K (2014) Dimethyl sulfide as a source of the seaweed-like aroma in cooked soybeans and correlation with its precursor, S-Metylmethionine (vitamin U). J Agric Food Chem 62:8289–8294PubMedCrossRefGoogle Scholar
  88. Moriwaki J (2010) Aiming of the construction of the race distinction system of Phytophthora sojae. Plant Prot 64:508–510Google Scholar
  89. Naito K, Takahashi Y, Chaitieng B, Hirano K, Kaga A, Takagi K et al (2017) Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo). Breed Sci 67:151–158PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H et al (2014) A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean. Plant Cell Physiol 55:1763–1771PubMedCrossRefGoogle Scholar
  91. Nakayama S (2015) Domestication of the soybean (Glycine max) and morphological differentiation of seeds in the Jomon period. Jpn J Histor Bot 23:33–42Google Scholar
  92. Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Rouf Mian MA et al (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493CrossRefGoogle Scholar
  93. Nguyen LV, Takahashi R, Githiri SM, Rodriguez TO, Tsutsumi N, Kajihara S et al (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr). Theor Appl Genet 130:743–755PubMedCrossRefGoogle Scholar
  94. Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y et al (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429PubMedPubMedCentralCrossRefGoogle Scholar
  95. Odanaka H, Kaizuma N (1989) Mutants on soybean storage proteins induced with γ-ray irradiation. Jpn J Breed 39(Suppl. 1):430–431Google Scholar
  96. Ohnishi S, Funatsuki H, Kasai A, Kurauchi T, Yamaguchi N, Takeuchi T et al (2011) Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. Theor Appl Genet 122:633–642PubMedCrossRefGoogle Scholar
  97. Ohnishi S, Miyake N, Takeuchi T, Kousaka F, Hiura S, Kanehira O et al (2012) Fine mapping of foxglove aphid (Aulacorthum solani) resistance gene Raso1 in soybean and its effect on tolerance to Soybean dwarf virus transmitted by foxglove aphid. Breed Sci 61:618–624PubMedPubMedCentralCrossRefGoogle Scholar
  98. Okazaki S, Zehner S, Hempel J, Lang K, Gottfert M (2009) Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 295:88–95PubMedCrossRefGoogle Scholar
  99. Oki N, Komatsu K, Sayama T, Ishimoto M, Takahashi M, Takahashi M (2012) Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.). Breed Sci 61:608–617PubMedPubMedCentralCrossRefGoogle Scholar
  100. Oki N, Kaga A, Shimizu T, Takahashi M, Kono Y, Takahashi M (2017) QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja). PLoS ONE 12:e0189440PubMedPubMedCentralCrossRefGoogle Scholar
  101. Onda R, Watanabe S, Sayama T, Komatsu K, Okano K, Ishimoto M, Harada K (2011) Genetic and molecular analysis of fasciation mutation in Japanese soybeans. Breed Sci 61:26–34CrossRefGoogle Scholar
  102. Primomo VS, Poysa V, Ablett GR, Jackson C-J, Gijzen M, Rajcan I (2005) Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci 45:2454–2464CrossRefGoogle Scholar
  103. Sakai T, Takada Y, Kono Y, Shimada S (2002) Characteristics of a new soybean variety “Fukuibuki”. Tohoku Agric Res 55:65–66Google Scholar
  104. Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A et al (2017) Mapping and identification of a potential candidate for a novel maturity locus, E10, in soybean. Theor Appl Genet 130:377–390PubMedCrossRefGoogle Scholar
  105. Samoto M, Maebuchi M, Miyazaki C, Kugitani H, Kohno M, Hirotsuka M, Kito M (2007) Abundant proteins associated with lecithin in soy protein isolate. Food Chem 102:317–322CrossRefGoogle Scholar
  106. Saruta M, Takada Y, Kikuchi A, Yamada T, Komatsu K, Sayama T et al (2012) Screening and genetic analysis of resistance to peanut stunt virus in soybean: identification of the putative Rpsv1 resistance gene. Breed Sci 61:625–650PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N et al (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176:514–521PubMedCrossRefGoogle Scholar
  108. Sayama T, Hwang TY, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M et al (2010) Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breed Sci 60:380–389CrossRefGoogle Scholar
  109. Sayama T, Ono E, Takagi K, Takada Y, Horikawa M, Nakamoto Y et al (2012) The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean. Plant Cell 24:2123–2138PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A et al (2017) Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the Ln gene in induced soybean mutants. Breed Sci 67:363–369PubMedPubMedCentralCrossRefGoogle Scholar
  111. Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T et al (2004) Patterning of virus infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16:807–818PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K (2008) Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci 58:361–366CrossRefGoogle Scholar
  113. Shim S, Ha J, Kim MY, Choi MS, Kang S-T, Jeong S-C et al (2019) GmBRC1 is a candidate gene for branching in soybean (Glycine max (L.) Merrill). Int J Mol Sci.  https://doi.org/10.3390/ijms20010135 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Shimamoto Y (2001) Polymorphism and phylogeny of soybean based on chloroplast and mitochondrial DNA analysis. JARQ 35:79–84CrossRefGoogle Scholar
  115. Shimomura M, Kanamori H, Komatsu S, Namiki N, Mukai Y, Kurita K et al (2015) The Glycine max cv. Enrei genome for improvement of Japanese soybean cultivars. Int J Genom 2015:358127Google Scholar
  116. Shiraiwa M, Yamauchi Harada K, Okubo K (1990) Inheritance of “Group A saponin” in soybean seed. Agric Biol Chem 54:1347–1352Google Scholar
  117. Song Q, Jenkins J, Jia G, Hyten D, Pantalone V, Jackson SA et al (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics.  https://doi.org/10.1186/s12864-015-2344-0 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Suematsu K, Abiko T, Nguyen VL, Mochizuki T (2017) Phenotypic variation in root development of 162 soybean accessions under hypoxia condition at the seedling stage. Plant Prod Sci 20:323–335CrossRefGoogle Scholar
  119. Sugimoto T, Yoshida S, Watanabe K, Aino M, Kanto T, Maekawa K, Irie K (2008) Identification of SSR markers linked to the Phytophthora resistance gene Rps1-d in soybean. Plant Breed 127:154–159CrossRefGoogle Scholar
  120. Sugimoto T, Yoshida S, Kaga A, Hajika M, Watanabe K, Aino M et al (2011a) Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica 182:133–145CrossRefGoogle Scholar
  121. Sugimoto T, Yoshida S, Aino M, Yamamoto R, Kuroda T, Maeda M, Irie K (2011b) Evaluation of several soybeans for field resistance to Phytophthora sojae and selection of parental soybeans for breeding new resistant cultivars. Jpn J Phytopathol 71:157Google Scholar
  122. Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y et al (2015) GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet 47:939–943PubMedCrossRefGoogle Scholar
  123. Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H (2010) Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Mol Breed 25:407–418CrossRefGoogle Scholar
  124. Suzuki C, Tanaka Y, Takeuchi T, Yumoto S, Shirai S (2012) Genetic relationships of soybean cyst nematode resistance originated in Gedenshirazu and PI84751 on Rhg1 and Rhg4 loci. Breed Sci 61:602–607PubMedPubMedCentralCrossRefGoogle Scholar
  125. Suzuki C, Miyoshi T, Shirai S, Yumoto S, Tanaka Y, Hagiwara S et al (2017) A new variety “Yukihomare R” introduced resistance for soybean cyst nematode race1 into “Yukihomare” by marker assisted selection. Bull Hokkaido Res Org Agric Exp Stns 101:33–47Google Scholar
  126. Tajuddin T, Watanabe S, Yamanaka N, Harada K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci 53:133–140CrossRefGoogle Scholar
  127. Takada Y, Sayama T, Kikuchi A, Kato S, Tatsuzaki N, Nakamoto Y et al (2010) Genetic analysis of variation in sugar chain composition at the C-22 position of group A saponin in soybean, Glycine max (L.) Merrill. Breed Sci 60:3–8CrossRefGoogle Scholar
  128. Takada Y, Sasama H, Sayama T, Kikuchi A, Kato S, Ishimoto M, Tsukamoto C (2013) Genetic and chemical analysis of a key biosynthetic step for soyasapogenol A, an aglycone of group A saponins that influence soymilk flavor. Theor Appl Genet 126:721–731PubMedCrossRefGoogle Scholar
  129. Takagi Y, Rahman SM, Anai T (2000) Construction of novel fatty acid composition in soybean oil by induced mutation. Gamma F Symp 37:17–28Google Scholar
  130. Takagi K, Kaga A, Ishimoto M, Hajika M, Matsunaga T (2015) Diversity of seed cesium accumulation in soybean mini-core collections. Breed Sci 65:372–380PubMedPubMedCentralCrossRefGoogle Scholar
  131. Takahashi K, Banba H, Kikuchi A, Ito M, Nakamura S (1994) An induced mutant line lacking the α-subunit of β-conglycinin in soybean [Glycine max (L.) Merrill]. Breed Sci 44:65–66Google Scholar
  132. Takahashi K, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R et al (2003) Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta 217:577–586PubMedCrossRefGoogle Scholar
  133. Takahashi K, Shimada S, Shimada H, Takada Y, Sakai T, Kono Y et al (2004) A new soybean cultivar “Yumeminori” with low allergenicity and high content of 11S globulin. Bull Natl Agric Res Cent Tohoku Reg 102:23–39Google Scholar
  134. Takahashi R, Benitez ER, Funatsuki H, Ohnishi S (2005) Soybean maturity and pubescence color genes improve chilling tolerance at high latitude regions. Crop Sci 45:1387–1393CrossRefGoogle Scholar
  135. Takahashi M, Takahashi M, Oki N, Komatsu K, Nakazawa Y, Matsunaga R et al (2013) New soybean cultivar “Suzukaren”. Bull NARO Kyushu Okinawa Agric Res Cent 59:1–22Google Scholar
  136. Takahashi M, Oki N, Takahashi M, Komatsu K, Nakazawa Y, Matsunaga R (2017) Breeding of new cultivar “Fukuminori” with resistance to common cutworm (Spodoptera litura Fabricius). Bull NARO Kyushu Okinawa Agric Res Cent 66:21–45Google Scholar
  137. Takeshima R, Hayashi T, Zhu J, Zhao C, Xu M, Yamaguchi N (2016) A soybean quantitative trait locus that promotes flowering under long days is identified as FT5a, a FLOWERING LOCUS T ortholog. J Exp Bot 67:5247–5258PubMedPubMedCentralCrossRefGoogle Scholar
  138. Takeya M, Yamasaki F, Hattori S, Kaga A, Tomooka N (2013) Systems for making NIAS core collections, single-seed-derived germplasm, and plant photo images available to the research community. Genet Resour Crop Evol 60:1945–1951CrossRefGoogle Scholar
  139. Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32PubMedCrossRefGoogle Scholar
  140. Tavva VS, Kim Y-H, Kagan IA, Dinkins RD, Kim K-H, Collins GB (2007) Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep 26:61–70PubMedCrossRefGoogle Scholar
  141. Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA 107:8563–8568PubMedCrossRefGoogle Scholar
  142. Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R (2002) A single-base deletion in soybean flavonoid 3’-hdroxylase gene is associated with gray pubescence color. Plant Mol Biol 50:187–196PubMedCrossRefGoogle Scholar
  143. Toda K, Hirata K, Masuda R, Yasui T, Yamada T, Takahashi K et al (2015) Relationship between mutations of the pectin methylesterase gene in soybean and the hardness of cooked beans. J Agric Food Chem 63:8870–8878PubMedCrossRefGoogle Scholar
  144. Tsubokura Y, Hajika M, Harada K (2006a) Molecular characterization of a β-conglycinin deficient soybean. Euphytica 150:249–255CrossRefGoogle Scholar
  145. Tsubokura Y, Hajika M, Harada K (2006b) Molecular markers associated with β-conglycinin deficiency in soybean. Breed Sci 56:113–117CrossRefGoogle Scholar
  146. Tsubokura Y, Hajika M, Kanamori H, Xia Z, Watanabe S, Kaga A et al (2012) The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α- subunit genes. Plant Mol Biol 78:301–309PubMedCrossRefGoogle Scholar
  147. Tsubokura Y, Matsumura H, Xu M, Liu B, Nakashima H, Anai T et al (2013) Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy 3:117–134CrossRefGoogle Scholar
  148. Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A et al (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113:429–441PubMedCrossRefGoogle Scholar
  149. Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K et al (2015) Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genom 16:1014CrossRefGoogle Scholar
  150. Tsukamoto C, Kikuchi A, Kudou S, Harada K, Kitamura K, Okubo K (1992) Group A acetyl saponin-deficient mutant from the wild soybean. Phytochemistry 31:4139–4142CrossRefGoogle Scholar
  151. Tsukamoto C, Kikuchi A, Harada K, Kitamura K, Okubo K (1993) Genetic and chemical polymorphism of saponins in soybean seed. Phytochemistry 34:1351–1356PubMedCrossRefGoogle Scholar
  152. Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236PubMedCrossRefGoogle Scholar
  154. Tuyen DD, Chen H, Vu HTT, Hamwieh A, Yamada T, Sato T et al (2016) Ncl synchronously regulates Na+, K+, and Cl in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147CrossRefGoogle Scholar
  155. Uchibori A, Sasaki J, Takeuchi T, Kamiya M, Tazawa A, Inukai T, Masuta C (2009) QTL analysis for resistance to Soybean dwarf virus in Indonesian soybean cultivar Wilis. Mol Breed 23:323–328CrossRefGoogle Scholar
  156. Ujiie A, Yamada T, Fujimoto K, Endo Y, Kitamura K (2005) Identification of soybean varieties with high α-tocopherol content. Breed Sci 55:123–125CrossRefGoogle Scholar
  157. Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishikawa A et al (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length cDNA library. DNA Res 15:333–346PubMedPubMedCentralCrossRefGoogle Scholar
  158. Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dai L et al (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Rep 6:23598PubMedPubMedCentralCrossRefGoogle Scholar
  159. VanToai TT, Beuerlein AF, Schmitthenner SK, St Martin SK (1994) Genetic variability for flooding tolerance in soybean. Crop Sci 34:1112–1115CrossRefGoogle Scholar
  160. Vollmann J, Losak T, Pachner M, Watanabe D, Musilova L, Hlusek J (2015) Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica 203:177–184CrossRefGoogle Scholar
  161. Wang WH, Takano T, Shibata D, Kitamura K, Takeda G (1994) Molecular basis of a null mutation in soybean lipoxygenase 2: substitution of glutamine for an iron-ligand histidine. Proc Natl Acad Sci USA 91:5828–5832PubMedCrossRefGoogle Scholar
  162. Wang WH, Kato T, Takano T, Shibata D, Kitamura K, Takeda G (1995) Two single-base substitutions involved in altering in a paired box of AAATAC in the promoter region of soybean lipoxygenase L-3 gene impair the promoter function in tobacco cells. Plant Sci 109:67–73CrossRefGoogle Scholar
  163. Wang S, Kanamaru K, Li W, Abe J, Yamada T, Kitamura K (2007) Simultaneous accumulation of high content of α-tocopherol and lutein is possible in seeds of soybean (Glycine max (L.) Merr.). Breed Sci 57:297–304CrossRefGoogle Scholar
  164. Wang W, He Q, Yang H, Xiang S, Zhao T, Gai J (2013) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. & Zucc.) as donor parent. Euphytica 189:293–307CrossRefGoogle Scholar
  165. Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K (2004) Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci 54:399–407CrossRefGoogle Scholar
  166. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y et al (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262PubMedPubMedCentralCrossRefGoogle Scholar
  167. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N et al (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407PubMedPubMedCentralCrossRefGoogle Scholar
  168. Watanabe S, Harada K, Abe J (2012) Genetic and molecular bases of photoperiodic responses of flowering in soybean. Breed Sci 61:531–543PubMedPubMedCentralCrossRefGoogle Scholar
  169. Watanabe S, Tsukamoto C, Oshita T, Yamada T, Anai T, Kaga A (2017) Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean. Breed Sci 67:277–285PubMedPubMedCentralCrossRefGoogle Scholar
  170. Watanabe S, Shimizu T, Machita K, Tsubokura Y, Xia X, Yamada T et al (2018) Development of a high-density linkage map and chromosome segment substitution lines for Japanese soybean cultivar Enrei. DNA Res 25:123–136PubMedCrossRefGoogle Scholar
  171. Wolfgang G, An Y (2017) Genetic separation of southern and northern soybean breeding programs in North America and their associated allelic variation at four maturity loci. Mol Breed.  https://doi.org/10.1007/s11032-016-0611-7 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Xia Z, Sato H, Watanabe S, Kawasaki S, Harada K (2005) Construction and characterization of a BAC library of soybean. Euphytica 141:129–137CrossRefGoogle Scholar
  173. Xia Z, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K et al (2007) An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res 14:257–269PubMedCrossRefGoogle Scholar
  174. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H et al (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164PubMedCrossRefGoogle Scholar
  175. Xin DW, Qi ZM, Jian HW, Hu ZB, Zhu RS, Hu JH et al (2016) QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS ONE 11:e0149380PubMedPubMedCentralCrossRefGoogle Scholar
  176. Xu DH, Abe J, Gai AJ, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653PubMedCrossRefGoogle Scholar
  177. Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S et al (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91PubMedPubMedCentralCrossRefGoogle Scholar
  178. Xu M, Yamaguchi N, Zhao C, Takeshima R, Kasai M, Watanabe S et al (2015) The soybean-specific maturity gene E1 family of floral repressor controls night-break responses through down-regulation of FLOWEING LOCUS T orthologs. Plant Physiol 168:1735–1746PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yagasaki K, Kaizuma N, Kitamura K (1996) Inheritance of glycinin subunits and characterization of glycinin molecules lacking the subunits in soybean (Glycine max (L.) Merr.). Breed Sci 46:11–15Google Scholar
  180. Yagasaki K, Sakamoto H, Seki K, Yamada N, Takamatsu M, Taniguchi T, Takahashi K (2010) Breeding of a new soybean cultivar “Nanahomare” (in Japanese). Hokuriku Crop Sci 45:61–64Google Scholar
  181. Yamada T, Hajika M, Yamada N, Hirata K, Okabe A, Oki N et al (2012) Effects on flowering and seed yield of dominant alleles at maturity loci E2 and E3 in a Japanese cultivar, Enrei. Breed Sci 61:653–660PubMedPubMedCentralCrossRefGoogle Scholar
  182. Yamada T, Shimada S, Hajika M, Hirata K, Takahashi K, Nagaya T et al (2014) Major QTLs associated with green stem disorder insensitivity of soybean (Glycine max (L.) Merr.). Breed Sci 64:331–338PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yamada T, Hajika M, Funatsuki H, Takahashi K, Hirata K, Hishinuma A, Tanaka J (2017) Causal analysis of yield-increase by introgression of shattering resistance gene pdh1 in soybean. Jpn J Crop Sci 86:251–257CrossRefGoogle Scholar
  184. Yamaguchi N, Sayama T, Sasama H, Yamazaki H, Miyoshi T, Tanaka Y, Ishimoto M (2014a) Mapping of quantitative trait loci associated with terminal raceme length in soybean. Crop Sci 54:2461–2468CrossRefGoogle Scholar
  185. Yamaguchi N, Sayama T, Yamazaki H, Miyoshi T, Ishimoto M, Funatsuki H (2014b) Quantitative trait loci associated with lodging tolerance in soybean cultivar ‘Toyoharuka’. Breed Sci 64:300–308PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yamaguchi N, Yamazaki H, Ohnishi S, Suzuki C, Hagihara S, Miyoshi T, Senda M (2014c) Methods for selection of soybeans tolerant to seed cracking under chilling temperatures. Breed Sci 64:103–108PubMedPubMedCentralCrossRefGoogle Scholar
  187. Yamaguchi N, Kurosaki H, Ishimoto M, Kawasaki M, Senda M, Miyoshi T (2015) Early-maturing and chilling-tolerant soybean lines derived from crosses between Japanese and Polish cultivars. Plant Prod Sci 18:234–239CrossRefGoogle Scholar
  188. Yamaguchi N, Ohnishi S, Miyoshi T (2018) Screening for chilling-tolerant soybeans at the flowering stage using a seed yield- and maturity-based evaluation method. Crop Sci 58:312–320CrossRefGoogle Scholar
  189. Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y et al (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8:61–72PubMedCrossRefGoogle Scholar
  190. Yamanaka N, Morishita M, Mori T, Lemos NG, Hossain MdM, Akamatsu H et al (2015) Multiple Rpp-gene pyramiding confers resistance to Asian soybean rust isolates that are virulent on each of the pyramided genes. Trop Plant Pathol 40:283–290CrossRefGoogle Scholar
  191. Yamashita Y, Tazawa A, Minami M (2012) Development of a method to evaluate the field resistance of soybean to Phytophthora sojae. Jpn J Crop Sci 81:183–189CrossRefGoogle Scholar
  192. Yamashita Y, Takeuchi T, Ohnishi S, Sasaki J, Tazawa A (2013) Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar ‘Wilis’. Breed Sci 63:417–422PubMedPubMedCentralCrossRefGoogle Scholar
  193. Yan T, Di S, Rodas FR, Torrico TR, Murai Y, Iwashita T et al (2014) Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2. BMC Plant Biol 14:58PubMedPubMedCentralCrossRefGoogle Scholar
  194. Yano R, Takagi K, Takada Y, Mukaiyama K, Tsukamoto C, Sayama T et al (2017) Metabolic switching of astringent and beneficial triterpenoid saponins in soybean is achieved by a loss-of-function mutation in cytochrome P450 72A69. Plant J 89:527–539PubMedCrossRefGoogle Scholar
  195. Yoshikawa T, Okumoto Y, Ogata D, Sayama T, Teraishi M, Terai M et al (2010) Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breed Sci 60:243–254CrossRefGoogle Scholar
  196. Yu N, Lee TG, Rosa DP, Hudson M, Diers BW (2016) Impact of Rhg1 copy number, type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean. Theor Appl Genet 129:2403–2412PubMedCrossRefGoogle Scholar
  197. Zhai H, Lu S, Wang Y, Chen X, Ren H, Yang J et al (2014) Allelic variation at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS ONE 9:e97636PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zhang B, Chen P, Florez-Palacios SL, Shi A, Hou A, Ishibashi T (2010) Seed quality attributes of food-grade soybeans from U.S. and Asia. Euphytica 173:387–396CrossRefGoogle Scholar
  199. Zhao C, Takashima R, Zhu J, Xu M, Sato M, Watanabe S et al (2016) A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol 16:20PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Institute of Crop Science. NAROTsukubaJapan

Personalised recommendations