Advertisement

Euphytica

, 215:62 | Cite as

Arabica coffee progenies with multiple resistant to root-knot nematodes

  • Ramiro M. Rezende
  • Vinicius T. Andrade
  • Sonia M. L. Salgado
  • Juliana C. de RezendeEmail author
  • Tiago G. C. Neto
  • Gladyston R. Carvalho
Article
  • 70 Downloads

Abstract

The root-knot nematode Meloidogyne paranaensis is considered the major threat in Coffea arabica plantations. Due to the aggressiveness of this nematode, cultivation is virtually impossible without a resistant cultivar. The main goal of this research was to identify resistant progenies derived from crossings of Catuaí and Timor hybrid cultivars in a greenhouse experiment. Additionally, genetic parameters for resistance were estimated to trace selection strategies. Coffee plants were inoculated with 9000 M. paranaensis eggs and second-stage juveniles (J2). Eighty-six plants previously selected in a Meloydogine exigua infested field gave rise to 86 progenies that were evaluated based on the dry matter of aerial parts (DMAP), fresh matter of extracted root (FMER), height (H), and diameter (DIA). The responses of the progenies to nematodes were assessed using the gall index and thickness (GIT), number of eggs J2/g root (NEJGR), and reproduction factor (RF).The cultivars Mundo Novo IAC 379-19, Catuaí Vermelho IAC 99, Paraíso MG H 419-1, and IPR 100 were used as susceptible and resistant controls. The GIT is genetically correlated with NEJGR and RF, and could be used in plant selection programs. Five progenies were resistant to M. paranaensis, with two of them not segregated to susceptibility. These progenies are considered multiple resistant to root-knot nematodes because they are also resistant to M. exigua.

Keywords

Plant breeding Coffea arabica Selection gain Disease resistance Timor hybrid Meloidogyne paranaensis 

Notes

Acknowledgements

To CNPq, FAPEMIG, Consórcio Pesquisa Café, and Instituto Nacional de Ciência e Tecnologia do Café (INCT Café/CNPq) for the financial support. We also thank CNPq (RMR and GRC), CAPES (VTA) and FAPEMIG (SMLS) for granting the scholarship and productivity.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no competing interest.

References

  1. Andreazi E, Sera GH, Faria RT, Sera T, Fonseca ICB, Machado ACZ, Shigueoka LH, Carvalho FG, Carducci FC (2015) Behavior of ‘IPR 100’ and ‘Apoatã IAC 2258’ coffee cultivars under different infestation levels of Meloidogyne paranaensis inoculum. Aust J Crop Sci 9:1069–1074.  https://doi.org/10.5958/j.0976-0571.37.1.016 CrossRefGoogle Scholar
  2. Barbosa DHSG, Vieira HD, Souza S (2008) Avaliação em campo de cultivares de Coffea arabica em áreas isenta ou infestada por Meloidogyne exigua na região noroeste fluminense: 1, formação da lavoura. Nematol Bras 32:101–110Google Scholar
  3. Barros AF, Oliveira RDL, Zambolim L, Ferreira AO, Coutinho RR (2011) Meloidogyne paranaensis attacking coffee trees in Espirito Santo State, Brazil. Australas Plant Dis Notes 6:43–45.  https://doi.org/10.1007/s13314-011-0015-9 CrossRefGoogle Scholar
  4. Boerma H, Hussey RS (1992) Breeding plants for resistance to nematodes. J Nematol 24:242–252PubMedPubMedCentralGoogle Scholar
  5. Boisseau M, Aribi J, de Sousa FR, Carneiro RMDG, Anthony F (2009) Resistance to Meloidogyne paranaensis in wild Coffea arabica. Trop Plant Pathol 34:38–41.  https://doi.org/10.1590/S1982-56762009000100006 CrossRefGoogle Scholar
  6. Campos V, Villain L (2005) Nematode parasites of coffee and cocoa. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, WallingfordGoogle Scholar
  7. Carneiro RMDG, Almeida MRA (2001) Técnica de eletroforese usada no estudo de enzimas dos nematoides de galhas para identificação de espécies. Nematol Bras 25:35–44Google Scholar
  8. Carneiro RMDG, Carneiro RG, Abrantes IMO (1996) Meloidogyne paranaenses sp.: a root-knot nematode parasitizing coffee in Brazil. J Nematol 28:177–189PubMedPubMedCentralGoogle Scholar
  9. Carneiro RDMG, Randigi O, Almeida MRA, Goncalves W (2005) Identificação e caracterização de espécies de Meloidogyne em cafeeiro nos Estados de São Paulo e Minas Gerais através dos fenótipos de esterase e SCAR-multiplex-PCR. Nematol Bras 29:233–241Google Scholar
  10. Carneiro RMDG, de Mesquita LFG, Gonçalves W, Pereira AA (2008) Pathogenicity of Meloidogyne spp. (Tylenchida: Meloidogynidae) from Brazil and Central America on two genotypes of Coffea arabica. Trop Plant Pathol 33:309–312.  https://doi.org/10.1590/S1982-56762008000400008 CrossRefGoogle Scholar
  11. Carvalho Filho JLS, Gomes LAA, Silva RR, Ferreira S, Carvalho RRC, Maluf WR (2011) Parâmetros populacionais e correlação entre características da resistência a nematoides de galhas em alface. Agrária 6:46–51.  https://doi.org/10.5039/agraria.v6i1a819 CrossRefGoogle Scholar
  12. Carvalho AM, Salgado SML, Mendes ANG, Pereira AA, Botelho CE, Tassone G, Lima RR (2017) Caracterização de genótipos de Coffea arabica L. em área infestada pelo nematoide Meloidogyne paranaensis. Coffee Sci 12:1–8CrossRefGoogle Scholar
  13. Castagnone-Sereno P (2002) Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica 124:193–199.  https://doi.org/10.1023/A:1015682500495 CrossRefGoogle Scholar
  14. Chen Y, Lubberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461.  https://doi.org/10.1016/j.tplants.2010.05.004 CrossRefPubMedGoogle Scholar
  15. Clarindo WR, de Carvalho CR, Caixeta ET, Koehler AD (2013) Following the track of Híbrido de Timor origin by cytogenetic and flow cytometry approaches. Resour Crop Evol 60:2253–2259.  https://doi.org/10.1007/s10722-013-9990-3 CrossRefGoogle Scholar
  16. Dos Botelho DMS, Resende MLV, Andrade VT, Pereira AA, Patricio FRA, Junior PMR, Ogoshi C, de Rezende JC (2017) Cercosporiosis resistance in coffee germplasm collection. Euphytica 213:117.  https://doi.org/10.1007/s10681-017-1901-9 CrossRefGoogle Scholar
  17. dos Fatobene BJR, Andrade VT, Aloise GS, Silvarolla MB, Gonçalves W, GuerreiroFilho O (2017) Wild Coffea arabica resistant to Meloidogyne paranaensis and genetic parameters for resistance. Euphytica 213:1–9.  https://doi.org/10.1007/s10681-017-1986-1 CrossRefGoogle Scholar
  18. Elling AA (2013) Major emergent problems with minor Meloidogyne species. Phytopathology 103:1092–1102.  https://doi.org/10.1094/PHYTO-01-13-0019-RVW CrossRefPubMedGoogle Scholar
  19. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, Ed 4. Longmans Green, Harlow, Essex, UKGoogle Scholar
  20. Fassuliotis G (1985) The role of the nematologists in the development of resistant cultivars. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne, vol I. Biology and control. North Carolina State University Graphics, Raleigh, pp 233–240Google Scholar
  21. Fernández C, Pinochet J, Esmenjaud D, Gravato-Nobre MJ, Felipe A (1995) Age of plant material influences resistance of some prunus rootstocks to Meloidogyne incognita. Hortscience 30:582–585CrossRefGoogle Scholar
  22. Gichuru EK, Agwanda CO, Combes MC, Mutitu EW, Ngugi ECK, Bertrand B, Lashermes P (2008) Identification of molecular markers linked to a gene conferring resistance to coffee berry disease (Colletotrichumkahawae) in Coffea arabica. Plant Pathol J 57:1117–1124.  https://doi.org/10.1111/j.1365-3059.2008.01846.x CrossRefGoogle Scholar
  23. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis Rep 57:1025–1028Google Scholar
  24. Ito DS, Sera GH, Sera T, Santiago DC, Kanayama FS, Del Grossi L (2008) Progênies de café com resistência aos nematóides Meloidogyne paranaensis e raça 2 de Meloidogyne incognita. Coffee Sci 3:156–163Google Scholar
  25. Johnson R (1984) A critical analysis of durable resistance. Annu Rev Phytopathol. 22:309–330.  https://doi.org/10.1146/annurev.py.22.090184.001521 CrossRefGoogle Scholar
  26. Lopez-Lima D, Sanchez-Nava P, Carrion G, de los Monteros AE, Villain L (2015) Corky-root symptoms for coffee in central Vera cruz are linked to the root-knot nematode Meloidogyne paranaensis, a new report for México. Eur J Plant Pathol 141:623–629.  https://doi.org/10.1007/s10658-014-0564-9 CrossRefGoogle Scholar
  27. Muniz MDF, Campos VP, Moita AW, Gonçalves W, Almeida MRA, de Sousa FR, Carneiro RMDG (2009) Reaction of coffee genotypes to different populations of Meloidogyne spp.: detection of a naturally virulent M. exigua population. Trop Plant Pathol 34:370–378.  https://doi.org/10.1590/S1982-56762009000600002 CrossRefGoogle Scholar
  28. Nyquist WE, Baker R (1991) Estimation of heritability and prediction of selection response in plant populations. Genet Resour Crop Evol 10:235–322.  https://doi.org/10.1080/07352689109382313 CrossRefGoogle Scholar
  29. Peres ACJ, Salgado SML, Correa VR, Santos MFA, Mattos VS, Monteiro JMS, Carneiro RMDG (2017) Resistance of Coffea arabica genotypes against Meloidogyne paranaensis and M. incognita under controlled and field conditions. Nematology 19:617–626.  https://doi.org/10.1163/15685411-00003075 CrossRefGoogle Scholar
  30. Ramalho MAP, Abreu AFB, Santos JB, Nunes JAR (2012) Aplicações da genética quantitativa no melhoramento de plantas autógamas. Editora UFLA, Lavras, p 522Google Scholar
  31. Resende MDV (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breed Appl Biotechnol 16:330–339.  https://doi.org/10.1590/1984-70332016v16n4a49 CrossRefGoogle Scholar
  32. Rezende RM, Salgado SML, de Rezende JC, Carvalho GR, Pereira AA, Lima RR, Ferreira AD (2013) Resistance of Coffea arabica progenies in field conditions infested by Meloidogyne exigua. Nematropica 43:233–240.  https://doi.org/10.1590/1984-70332014v14n2a17 CrossRefGoogle Scholar
  33. Rezende RM, de Rezende JC, Carvalho GR, Botelho CE, Salgado SML, Ferreira AD (2015) Geneticgainprediction in coffeeprogeniesderivedfromthecrossbetween Híbrido de Timor and Catuaí cultivars. Afr J Agric Res 10:4252–4257.  https://doi.org/10.5897/AJAR2015.9838 CrossRefGoogle Scholar
  34. Rezende RM, Andrade VT, Salgado SM, Rezende JC de, Menezes J de O, Carvalho GR (2017) Genetic gain in the resistance of Arabica coffee progenies to root-knot nematode.Crop Sci. 57: 1-8.  https://doi.org/10.5897/ajar2015.9838
  35. Salgado SML, Rezende JC (2010) Manejo de Fitonematoides do Cafeeiro. In: Reis PR, da Cunha RL (eds) Café Arábica: do plantio à colheita. U.R. Epamig SM, Lavras, pp 757–804Google Scholar
  36. Salgado SML, Rezende JC, Nunes JAR (2014) Selection of coffee progenies for resistance to nematode Meloidogyne paranaensis in infested area. Crop Breed Appl Biotechnol 14:94–101.  https://doi.org/10.1590/1984-70332014v14n2a17 CrossRefGoogle Scholar
  37. Salgado SML, Guimaraes NMRB, Botelho CE, Tassone G, Marcelo AL, Souza SR, Oliveira RDL, Ferreira DF (2015) Meloidogyne paranaensis e Meloidogyne exigua em Lavouras Cafeeiras da Região Sul de Minas Gerais. Coffee Sci 10:475–481Google Scholar
  38. Santos MFA, Correa VR, Peixoto JR, Mattos VS, Silva JGP, Moita AW, Salgado SML, Castagnone-Sereno P, Carneiro RMDG (2018) Genetic variability of Meloidogyne paranaensis populations and their aggressiveness to susceptible coffee genotypes. Plant Pathol 67:193–201.  https://doi.org/10.1111/ppa.12718 CrossRefGoogle Scholar
  39. Seinhorst JW (1967) The relationships between population increase and population density in plant parasitic nematodes. Nematologica 13:57–171.  https://doi.org/10.1163/187529267X01048 CrossRefGoogle Scholar
  40. Sera GH, Sera T, Mata JS, Alegre CR, Fonseca ICB, Ito DS, Kanayama FS, Barreto PC (2009) Reaction of coffee cultivars Tupi IAC 1669-33 and IPR 100 to nematode Meloidogyne paranaensis. Crop Breed Appl Biotechnol 9:293–298CrossRefGoogle Scholar
  41. Sera T, Sera GH, Fazuoli LC, Machado ACZ, Ito DS, Shigueoka LH, Silva AS (2017) IPR 100: Rustic dwarf Arabica coffee cultivar with resistance to nematodes Meloidogyne paranaensis and M. incognita. Crop Breed Appl Biotechnol 17:25–29.  https://doi.org/10.1590/1984-70332017v17n2c26 CrossRefGoogle Scholar
  42. Setotaw TA, Caixeta ET, Pena GF, Zambolim EM, Pereira AA, Sakiyama NS (2010) Breeding potential and genetic diversity of “Híbrido de Timor” coffee evaluated by molecular markers. Crop Breed Appl Biotechnol 10:298–304.  https://doi.org/10.1590/S1984-70332010000400003 CrossRefGoogle Scholar
  43. Shigueoka LH, Sera GH, Sera T, de Fonseca ICB, Andreazi E, Carvalho FG, Carducc FC, Ito SD (2016) Reaction of Arabica coffee progenies derivative from Icatu to Meloidogyne paranaensis. Bragantia 75:193–198.  https://doi.org/10.1590/1678-4499.229 CrossRefGoogle Scholar
  44. Silva MDC, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, Petitot AS, Bertrand B, Lashermes P, Nicole M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147.  https://doi.org/10.1590/S1677-04202006000100010 CrossRefGoogle Scholar
  45. Silva RV, Oliveira RDL, Zambolin L (2009) Primeiro relato de ocorrência de Meloidogyne paranaensis em cafeeiro no estado de Goiás. Nematol Bras 33:187–190Google Scholar
  46. Sobreira FM, Oliveira ACB, Pereira AA, Sakiyama NS (2015) Potential of Híbrido de Timor germplasm and its derived progenies for coffee quality improvement. Aust J Crop Sci 9:289–295Google Scholar
  47. Taylor AC, Sasser JN (1978) Biology, identification and control of root-knot nematodes: International Meloidogyne Project. North Carolina State University Graphics, Raleigh, p 111Google Scholar
  48. Villain L, Bertrand B, Sarah JL, Hernández A, Anthony F, Lashermes P, Charmetant P, Anzueto F, Carneiro RMGD (2013) Diversity of root-knot nematodes associated with coffee orchards in Central America. Nematropica 43:194–206Google Scholar
  49. Yan W, Fregeau-Reid J (2008) Breeding line selection based on multiple traits. Crop Sci 48:417–423.  https://doi.org/10.2135/cropsci2007.05.0254 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ramiro M. Rezende
    • 1
  • Vinicius T. Andrade
    • 2
  • Sonia M. L. Salgado
    • 3
  • Juliana C. de Rezende
    • 3
    Email author
  • Tiago G. C. Neto
    • 1
  • Gladyston R. Carvalho
    • 3
  1. 1.Departamento de FitotecniaUniversidade Federal de Lavras - UFLALavrasBrazil
  2. 2.Centro de Café ‘Alcides Carvalho’Instituto Agronômico de Campinas - IACCampinasBrazil
  3. 3.EPAMIG SulLavrasBrazil

Personalised recommendations