Advertisement

Euphytica

, 215:68 | Cite as

Stripe rust resistance to a burgeoning Puccinia striiformis f. sp. tritici race CYR34 in current Chinese wheat cultivars for breeding and research

  • Licheng Wang
  • Xinrui Tang
  • Jianhui Wu
  • Chuan Shen
  • Miaofei Dai
  • Qilin Wang
  • Qingdong Zeng
  • Zhensheng Kang
  • Yunfeng WuEmail author
  • Dejun HanEmail author
Article
  • 102 Downloads

Abstract

Stripe (yellow) rust is one of the most destructive diseases in wheat production. More than 80 stripe rust resistance (Yr) genes have been officially named, however Yr26 gene has lost resistance to CYR34 (V26) since 2011. In this study, we evaluated resistance of 692 elite wheat cultivars from China to stripe rust in adult plant stage and resistance to CYR32, CYR33, and CYR34 Pst races in seedling stags. Yr26 was deduced in 692 cultivars by WE173 and WE33 molecular marks. The result showed that 45 (7%) entries had all-stage resistance, 79 (11%) entries had adult-plant resistance, and 568 (82%) entries were susceptible to one or more stripe rust races. Besides, 48 (81%) entries in over-summering region were resistant to CYR34, 4 (10%) in over-wintering region, 121 (20%) in spring epidemic region. And 43 entries across China were detected to have Yr26 gene.

Keywords

Stripe rust CYR34/V26 Yr26 Wheat 

Notes

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFE0108600), the earmarked fund for Modern Agro-industry Technology Research System (No. CARS-3-1-11), and the National Science Foundation for Young Scientists in China (Grant 31701421). The authors are grateful to the support of the funding mentioned above.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10681_2019_2383_MOESM1_ESM.xlsx (57 kb)
Supplementary material 1 (XLSX 57 kb)

References

  1. An Z, Xie L, Cheng H et al (2009) A silver staining procedure for nucleic acids in polyacrylamide gels without fixation and pretreatment. Analyt Biochem 391(1):77–79.  https://doi.org/10.1016/j.ab.2009.04.036 CrossRefPubMedGoogle Scholar
  2. Bai B, Du JY, Lu QL et al (2014) Effective resistance to wheat stripe rust in a region with high disease pressure. Plant Dis 98(7):891–897.  https://doi.org/10.1094/PDIS-09-13-0909-RE CrossRefPubMedGoogle Scholar
  3. Brown JKM, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581):537–541.  https://doi.org/10.1126/science.1072678 CrossRefPubMedGoogle Scholar
  4. Chen PD, Qi LL, Zhou B (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91(6):1125–1128.  https://doi.org/10.1007/BF00223930 CrossRefPubMedGoogle Scholar
  5. Chen WQ, Xu SC, Wu LR (2007) Epidemiology and sustainable management of wheat stripe rust caused by Puccinia striiformis West in China: a historical retrospect and prospect. Sci Agr Sin 40(1):177–183Google Scholar
  6. Cheng YS, Liu ZY, Xie CJ et al (2006) Microsatellite markers for a yellow rust resistant gene in wheat cultivar Guinong21. Acta Agron Sin 32(12):1867–1872Google Scholar
  7. Han DJ, Wang N, Jiang Z et al (2012) Characterization and inheritance of resistance to stripe rust in the wheat line Guinong775. Hereditas 34(12):1607–1613.  https://doi.org/10.3724/SP.J.1005.2012.01607 CrossRefPubMedGoogle Scholar
  8. Han DJ, Wang QL, Chen XM et al (2015) Emerging Yr26-Virulent Races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin. China Plant Dis 99(7):754–760.  https://doi.org/10.1094/PDIS-08-14-0865-RE CrossRefPubMedGoogle Scholar
  9. He ZH, Lan CX, Chen XM et al (2011) Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agr Sin 1:60–63.  https://doi.org/10.3864/j.issn.0578-1752.2011.11.001 CrossRefGoogle Scholar
  10. Hovmøller MS, Walter S, Bayles RA et al (2016) Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol 65(3):402–411.  https://doi.org/10.1111/ppa.12433 CrossRefGoogle Scholar
  11. Khanna R, Bansal UK, Saini RG (2005) Genetics of adult plant stripe rust resistance in CSP44, a selection from Australian wheat. Ind Acad of Sci 84(3):337–340.  https://doi.org/10.1007/BF02715806 CrossRefGoogle Scholar
  12. Ksenia VK, Hans AVG, Tyson H et al (2017) Uncovering hidden variation in polyploid wheat. PNAS 114(6):E913–E921.  https://doi.org/10.1073/pnas.1619268114 CrossRefGoogle Scholar
  13. Lagudah ES, Mcfadden H, Singh RP et al (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114(1):21–30.  https://doi.org/10.1007/s00122-006-0406-z CrossRefPubMedGoogle Scholar
  14. Lan CX, Singh RP, Huerta EJ et al (2014) Genetic analysis of resistance to leaf rust and stripe rust in wheat cultivar Francolin#1. Plant Dis 98(9):1227–1234.  https://doi.org/10.1094/PDIS-07-13-0707-RE CrossRefPubMedGoogle Scholar
  15. Lei Y, Wang M, Wan A et al (2017) Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology 107(3):329–344.  https://doi.org/10.1094/PHYTO-07-16-0261-R CrossRefPubMedGoogle Scholar
  16. Li ZQ, Zeng SM (2002) Wheat rust of China. China Agriculture Press, BeijingGoogle Scholar
  17. Li B, Xu Q, Yang YH et al (2017) Stripe rust resistance and genes in chongqing wheat cultivars and lines. Sci Agr Sin 50(3):413–425.  https://doi.org/10.1007/s10681-013-1030-z CrossRefGoogle Scholar
  18. Liang JM, Wan Q, Luo Y et al (2013) Population genetic structures of Puccinia striiformis in Ningxia and Gansu Provinces of China. Plant Dis 97(4):501–509.  https://doi.org/10.1094/PDIS-01-12-0072-RE CrossRefPubMedGoogle Scholar
  19. Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968–1987. Technical BulletinGoogle Scholar
  20. Liu TG, Peng YL, Chen WQ et al (2010) First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Dis 94(9):1163.  https://doi.org/10.1094/PDIS-94-9-1163C CrossRefPubMedGoogle Scholar
  21. Liu TG, Wang BT, Jia QZ et al (2012) Physiologic specialization of Pucciniatriiformis f. sp. tritici in China duing 2010–2011. J Trit Crops 32(3):574–578Google Scholar
  22. Liu W, Maccaferri M, Bulli P et al (2016) Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat. Theor Appl Genet 130(4):1–9.  https://doi.org/10.1007/s00122-016-2841-9 CrossRefGoogle Scholar
  23. Ma JX, Zhou RH, Dong YS (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum tuigidum L. using microsatellite markers. Euphytica 120(2):219–226.  https://doi.org/10.1023/A:1017510331721 CrossRefGoogle Scholar
  24. Peterson RF, Campell AB, Hannah A (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26(5):496–500.  https://doi.org/10.1139/cjr48c-033 CrossRefGoogle Scholar
  25. Prins R, Dreisigacker S, Pretorius Z et al (2016) Stem rust resistance in a geographically diverse collection of spring wheat lines collected from across Africa. Front Plant Sci 7:973.  https://doi.org/10.3389/fpls.2016.00973 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Singh A, Knox RE, Depauw RM et al (2014) Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents. Theor Appl Genet 127(11):2465–2477.  https://doi.org/10.1007/s00122-014-2390-z CrossRefPubMedGoogle Scholar
  27. Song WN, Ko L, Henry RJ (1994) Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor Appl Genet 89(4):509–513.  https://doi.org/10.1007/BF00225388 CrossRefGoogle Scholar
  28. Wang CM, Zhang YP, Han DJ et al (2008) SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159(3):359–566.  https://doi.org/10.1007/s10681-007-9524-1 CrossRefGoogle Scholar
  29. Wang FP, Zhan GM, Wei GR et al (2014) Population virulence analysis of Puccinia striiformis f. sp. tritici on two wheat cultivars in differnet zones in longnan. J Trit Crops 34(8):1146–1152.  https://doi.org/10.7606/j.issn.1009-1041.2014.08.20 CrossRefGoogle Scholar
  30. Wang Y, Xie JZ, Zhang HZ et al (2017) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130(10):2191–2201.  https://doi.org/10.1007/s00122-017-2950-0 CrossRefPubMedGoogle Scholar
  31. Wellings CR, Wright DG, Keiper F et al (2003) First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Austral Plant Pathol 32(2):321–322.  https://doi.org/10.1071/AP03023 CrossRefGoogle Scholar
  32. Wu JH, Wang QL, Chen XM et al (2016) Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China. Can J Plant Pathol 38(3):317–324.  https://doi.org/10.1080/07060661.2016.1206039 CrossRefGoogle Scholar
  33. Yuan FP, Wei GR, Zhan GM et al (2014) Characterization on virulence of main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China. J Trit Crops 34(11):1577–1582Google Scholar
  34. Yuan FP, Zeng QD, Wu JH et al (2018) QTL mapping and validation of adult plant resistance to stripe rust in Chinese wheat landrace Humai 15. Front Plant Sci 9:968.  https://doi.org/10.3389/fpls.2018.00968 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zeng SM, Luo Y (2006) Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Dis 90(8):980–988.  https://doi.org/10.1094/PD-90-0980 CrossRefPubMedGoogle Scholar
  36. Zeng Z, Fu T, Tang Y et al (2007) Identification and chromosomal locations of novel genes for resistance to powdery mildew and stripe rust in a wheat line 101-3. Euphytica 156(1–2):89–94.  https://doi.org/10.1007/s10681-007-9355-0 CrossRefGoogle Scholar
  37. Zeng QD, Han DJ, Wang QL et al (2014) Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica 196(2):271–284.  https://doi.org/10.1007/s10681-013-1030-z CrossRefGoogle Scholar
  38. Zheng WM, Kang ZS, Jiang SJ et al (2008) Progress in ecological research of wheat stripe rust. Chin J App Ecol 19(3):681–685Google Scholar
  39. Zhou XL, Han DJ, Gou HL et al (2014) Molecular mapping of a stripe rust resistance gene in wheat cultivar Wuhan 2. Euphytica 196(2):251–259.  https://doi.org/10.1007/s10681-013-1028-6 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Licheng Wang
    • 1
    • 2
  • Xinrui Tang
    • 2
  • Jianhui Wu
    • 2
  • Chuan Shen
    • 1
    • 2
  • Miaofei Dai
    • 2
  • Qilin Wang
    • 1
  • Qingdong Zeng
    • 1
  • Zhensheng Kang
    • 1
  • Yunfeng Wu
    • 1
    Email author
  • Dejun Han
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYanglingPeople’s Republic of China
  2. 2.State Key Laboratory of Crop Stress Biology for Arid Areas, College of AgronomyNorthwest Agriculture and Forestry UniversityYanglingPeople’s Republic of China

Personalised recommendations