, 215:45 | Cite as

Diversification of seed carotenoid content and profile in wild barley (Hordeum chilense Roem. et Schultz.) and Hordeum vulgare L.–H. chilense synteny as revealed by DArTSeq markers

  • C. M. Avila
  • M. G. Mattera
  • C. Rodríguez-Suárez
  • C. Palomino
  • M. C. Ramírez
  • A. Martin
  • A. Kilian
  • D. Hornero-Méndez
  • S. G. AtienzaEmail author


The high carotenoid content and distinctive carotenoid profile of tritordeum are conferred by its wild progenitor, Hordeum chilense. Genetic studies on this wild barley could exploit the knowledge gained in Hordeum vulgare L. if the synteny between H. vulgare and H. chilense is established. DArTSeq markers were aligned to barley genome and used to inspect H. chilense-barley synteny. All chromosome pairs showed a good degree of collinearity with the exception of 7Hv–7Hch, where a reciprocal translocation in 7Hch was identified. Carotenoid analyses revealed a high diversity for total carotenoids, free and esterified lutein in a collection of H. chilense. Population structure analyses revealed the existence of two subgroups contrasting for total carotenoids, free lutein and esterified lutein in seeds. Lutein esters were produced with palmitic and linoleic acids as happens in tritordeum. However, tritordeum prefer palmitic acid for the synthesis of lutein esters but this preference is not maintained in H. chilense. This indicates the existence of diversity in the enzymes involved in the esterification which could be useful in tritordeum breeding. Furthermore, several accessions produced lutein monoesters but they lacked diesters which suggests that esterification is controlled by more than one enzyme in H. chilense. A total of 91 marker-trait associations were identified for carotenoid content and profile. These associations constitute a good starting point for future genetic analyses for the identification of candidate genes from H. vulgare genome.


Carotenoid esters Lutein esters Hordeum chilense Tritordeum Wild relatives 



Research funded by Grant AGL2014-53195R, from Ministerio de Economía y Competitividad, Spain (MINECO) including FEDER funding. M.G.M. was recipient of FPI (BES-2012-055961). D.H.-M. is a member of CaRed Network, funded by MINECO (BIO2015-71703-REDT). S.G.A. and CMA are members of FiRCMe Network, funded by MINECO (AGL2016-81855-REDT).

Supplementary material

10681_2019_2369_MOESM1_ESM.xlsx (362 kb)
Supplementary file 1. Alignment results of DArTSeq markers against barley genes. (XLSX 361 kb)
10681_2019_2369_MOESM2_ESM.xlsx (241 kb)
Supplementary file 2. DArTSeq markers showing significant association after GWAS analysis. (XLSX 241 kb)
10681_2019_2369_MOESM3_ESM.xlsx (11 kb)
Supplementary file 3. Comparison of the resulting groups in H. chilense with DArTseq markers and morphological characters. (XLSX 10 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atienza SG, Gimenez MJ, Martin A, Martin LM (2000) Variability in monomeric prolamins in Hordeum chilense. Theor Appl Genet 101:970–976CrossRefGoogle Scholar
  3. Atienza SG, Alvarez JB, Villegas AM, Gimenez MJ, Ramirez MC, Martin A, Martin LM (2002) Variation for the low-molecular-weight glutenin subunits in a collection of Hordeum chilense. Euphytica 128:269–277CrossRefGoogle Scholar
  4. Atienza SG, Avila CM, Martin A (2007a) The development of a PCR-based marker for Psy1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust J Agric Res 58:767–773CrossRefGoogle Scholar
  5. Atienza SG, Ballesteros J, Martin A, Hornero-Mendez D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (xTritordeum Ascherson et Graebner) and durum wheat accessions. J Agric Food Chem 55:4244–4251CrossRefGoogle Scholar
  6. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. CrossRefPubMedGoogle Scholar
  7. Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol. 1B: spectroscopy. Birkhäuser, Basel, pp 13–62Google Scholar
  8. Camacho C, Coulouris g, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST + : architecture and applications. BMC Bioinform 10:421CrossRefGoogle Scholar
  9. Castillo A, Dorado G, Feuillet C, Sourdille P, Hernandez P (2010) Genetic structure and ecogeographical adaptation in wild barley (Hordeum chilense Roemer et Schultes) as revealed by microsatellite markers. BMC Plant Biol 10:266CrossRefGoogle Scholar
  10. Charmet G (2011) Wheat domestication: lessons for the future. C R Biol 334:212–220. CrossRefPubMedGoogle Scholar
  11. Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. PNAS 101:15289–15294. CrossRefPubMedGoogle Scholar
  12. Cuttriss AJ, Cazzonelli CI, Wurtzel ET, Pogson BJ (2011) Carotenoids. Adv Bot Res 58:1–36CrossRefGoogle Scholar
  13. Davies BH, Köst HP (1988) Carotenoids. In: Köst HP (ed) Handbook of chromatography, vol 1. CRC Press, Boca RatónGoogle Scholar
  14. Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162CrossRefGoogle Scholar
  15. Eugster CH (1995) Chemical derivatization: microscale test for the presence of common functional groups in carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) carotenoids, vol 1A. Isolation and analysis. Birkhäuser, Basel, pp 71–80Google Scholar
  16. Ficco DBM, Mastrangelo AM, Trono D, Borrelli GM, De Vita P, Fares C, Beleggia R, Platani C, Papa R (2014) The colours of durum wheat: a review. Crop Pasture Sci 65:1–15. CrossRefGoogle Scholar
  17. Foppen FH (1971) Tables for identification of carotenoid pigments. Chromatogr Rev 14:133–298CrossRefGoogle Scholar
  18. Giménez MJ, Cosío F, Martínez C, Silva F, Zuleta A, Martin LM (1997) Collecting Hordeum chilense Roem. et Schult. germplasm in desert and steppe dominions of Chile. Plant Genet Resour Newsl 109:17–19Google Scholar
  19. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218CrossRefGoogle Scholar
  20. Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ 29:435–445CrossRefGoogle Scholar
  21. Khazaei H, O’Sullivan D, Sillanpää M, Stoddard F (2014) Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet 127:2371–2385. CrossRefPubMedGoogle Scholar
  22. King J, Grewal S, C-y Yang, Hubbart Edwards S, Scholefield D, Ashling S, Harper JA, Allen AM, Edwards KJ, Burridge AJ, King IP (2017) Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann Bot 121:229–240. CrossRefPubMedCentralGoogle Scholar
  23. Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Książkiewicz M, Nazzicari N, Ha Yang, Nelson MN, Renshaw D, Rychel S, Ferrari B, Carelli M, Tomaszewska M, Stawiński S, Naganowska B, Wolko B, Annicchiarico P (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Martin A, Sánchez-Monge E (1982) Cytology and morphology of the amphiploid Hordeum chilense ´ Triticum turgidum conv durum. Euphytica 31:261–267CrossRefGoogle Scholar
  26. Martin A, Martínez C, Rubiales D, Ballesteros J (1996) Tritordeum: triticale’s new brother cereal. In: Güedes-Pinto H, Darvey N, Carnide VP (eds) Triticale: today and tomorrow. Kluwer Academic Publishers, Dordrecht, pp 57–72CrossRefGoogle Scholar
  27. Martin A, Martín LM, Cabrera A, Ramírez MC, Giménez MJ, Rubiales P, Hernández P, Ballesteros J (1998) The potential of Hordeum chilense in breeding Triticeae species. In: Jaradat AA (ed) Triticeae III. Science Publications, Enfield, pp 377–386Google Scholar
  28. Martín AC, Castillo A, Atienza SG, Rodríguez-Suárez C (2018) A cytoplasmic male sterility (CMS) system in durum wheat. Mol Breed 38:90. CrossRefGoogle Scholar
  29. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433. CrossRefPubMedGoogle Scholar
  30. Mattera MG, Cabrera A (2017) Characterization of a set of common wheat–Hordeum chilense chromosome 7Hch introgression lines and its potential use in research on grain quality traits. Plant Breed 136:344–350. CrossRefGoogle Scholar
  31. Mattera MG, Ávila CM, Atienza SG, Cabrera A (2015a) Cytological and molecular characterization of wheat-Hordeum chilense chromosome 7Hch introgression lines. Euphytica 203:165–176. CrossRefGoogle Scholar
  32. Mattera MG, Cabrera A, Hornero-Méndez D, Atienza SG (2015b) Lutein esterification in wheat endosperm is controlled by the homoeologous group 7, and is increased by the simultaneous presence of chromosomes 7D and 7Hch from Hordeum chilense. Crop Pasture Sci 66:912–921. CrossRefGoogle Scholar
  33. Mattera MG, Hornero-Mendez D, Atienza SG (2017) Lutein ester profile in wheat and tritordeum can be modulated by temperature: evidences for regioselectivity and fatty acid preferential of enzymes encoded by genes on chromosomes 7D and 7H(ch). Food Chem 219:199–206. CrossRefPubMedGoogle Scholar
  34. Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263. CrossRefPubMedPubMedCentralGoogle Scholar
  35. McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G, Dempewolf H, Dingkuhn M, Feuillet C, Gepts P, Grattapaglia D, Guarino L, Jackson S, Knapp S, Langridge P, Lawton-Rauh A, Lijua Q, Lusty C, Michael T, Myles S, Naito K, Nelson RL, Pontarollo R, Richards CM, Rieseberg L, Ross-Ibarra J, Rounsley S, Hamilton RS, Schurr U, Stein N, Tomooka N, van der Knaap E, van Tassel D, Toll J, Valls J, Varshney RK, Ward J, Waugh R, Wenzl P, Zamir D (2013) Feeding the future. Nature 499:23. CrossRefPubMedGoogle Scholar
  36. Mellado-Ortega E, Hornero-Mendez D (2012) Isolation and identification of lutein esters, including their regioisomers, in tritordeum (× Tritordeum Ascherson et Graebner) grains: evidence for a preferential xanthophyll acyltransferase activity. Food Chem 135:1344–1352CrossRefGoogle Scholar
  37. Mellado-Ortega E, Hornero-Mendez D (2017) Lutein esterification in wheat flour increases the carotenoid retention and is induced by storage temperatures. Foods (Basel, Switzerland) 6:111. CrossRefGoogle Scholar
  38. Mellado-Ortega E, Hornero-Méndez D (2015) Carotenoid profiling of Hordeum chilense grains: the parental proof for the origin of the high carotenoid content and esterification pattern of tritordeum. J Cereal Sci 62:15–21. CrossRefGoogle Scholar
  39. Mellado-Ortega E, Hornero-Méndez D (2018) Effect of lutein esterification on the differential distribution of carotenoids in germ and endosperm fractions from tritordeum grains. J Cereal Sci 79:462–468. CrossRefGoogle Scholar
  40. Mellado-Ortega E, Atienza SG, Hornero-Méndez D (2015) Carotenoid evolution during postharvest storage of durum wheat (Triticum turgidum conv. durum) and tritordeum (× Tritordeum Ascherson et Graebner) grains. J Cereal Sci 62:134–142. CrossRefGoogle Scholar
  41. Mínguez-Mosquera MI, Hornero-Méndez D (1993) Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika and oleoresin by reversed-phase HPLC. J Agric Food Chem 41:1616–1620CrossRefGoogle Scholar
  42. Mínguez-Mosquera MI, Gandul-Rojas B, Gallardo-Guerrero L (1992) Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by high-performance liquid chromatography. J Agric Food Chem 40:60–63CrossRefGoogle Scholar
  43. Moore GA, Devos KM, Wang Z, Dale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739CrossRefGoogle Scholar
  44. Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ (2009) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. PNAS 106:18159–18164. CrossRefPubMedGoogle Scholar
  45. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325CrossRefGoogle Scholar
  46. Ochoa V, Madrid E, Said M, Rubiales D, Cabrera A (2015) Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201:89–95. CrossRefGoogle Scholar
  47. Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 4:439–473CrossRefGoogle Scholar
  48. Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537CrossRefGoogle Scholar
  49. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  50. Pujadas AJ (2016) × Tritordeum martinii A. pujadas (Poaceae) Nothosp Nov. Acta Bot Malacit 41:325–338CrossRefGoogle Scholar
  51. Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S (2017) Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot 121:603–616. CrossRefGoogle Scholar
  52. Rey M-D, Calderón M-C, Rodrigo MJ, Zacarías L, Alós E, Prieto P (2015) Novel bread wheat lines enriched in carotenoids carrying Hordeum chilense chromosome arms in the ph1b background. PLoS ONE 10:e0134598. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rey M-D, Moore G, Martín AC (2018) Identification and comparison of individual chromosomes of three Hordeum chilense accessions, Hordeum vulgare and Triticum aestivum by FISH. Genome 61:387–396. CrossRefPubMedGoogle Scholar
  54. Rodríguez-Suárez C, Atienza SG (2012) Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae. BMC Plant Biol 12:200. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rodríguez-Suárez C, Atienza SG (2014) Polyphenol oxidase genes in Hordeum chilense and implications in tritordeum breeding. Mol Breed 34:1867–1877. CrossRefGoogle Scholar
  56. Rodríguez-Suárez C, Giménez MJ, Atienza SG (2010) Progress and perspectives for carotenoid accumulation in selected Triticeae species. Crop Pasture Sci 61:743–751CrossRefGoogle Scholar
  57. Rodríguez-Suárez C, Ramírez MC, Martín A, Atienza SG (2011) Applicability of chromosome-specific SSR wheat markers for the introgression of Triticum urartu in durum wheat breeding programmes. Plant Genetic Res 9:439–444CrossRefGoogle Scholar
  58. Rodríguez-Suárez C, Giménez M, Gutiérrez N, Ávila C, Machado A, Huttner E, Ramírez M, Martín A, Castillo A, Kilian A, Atienza SG (2012) Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet 124:713–722. CrossRefPubMedGoogle Scholar
  59. Rodríguez-Suárez C, Mellado-Ortega E, Hornero-Méndez D, Atienza S (2014) Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Plant Mol Biol 84:659–673. CrossRefPubMedGoogle Scholar
  60. Bothmer RV, Jacobsern N, Nicora E (1980) Revision of Hordeum sect. Anisolepis Nevski. Bot Not 133:539–554Google Scholar
  61. Said M, Recio R, Cabrera A (2012) Development and characterisation of structural changes in chromosome 3Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica 188:429–440. CrossRefGoogle Scholar
  62. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066CrossRefGoogle Scholar
  63. The_International_Barley_Genome_Sequencing_Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  64. Tobes N, Ballesteros J, Martínez C, Lovazzano G, Contreras D, Cosio F, Gastó J, Martín LM (1995) Collection mission of H. chilense Roem. et Schult. in Chile and Argentina. Genet Res Crop Evol 42:211–216CrossRefGoogle Scholar
  65. van Leeuwen JW, Hartfield K, Miranda M, Meza JF (2013) Trends and ENSO/AAO driven variability in NDVI derived productivity and phenology alongside the Andes Mountains. Remote Sens 5:1177–1203. CrossRefGoogle Scholar
  66. Vano Oijen J (2006) Joinmap 4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  67. Vaz Patto MC, Aardse A, Buntjer J, Rubiales D, Martin A, Niks RE (2001) Morphology and AFLP markers suggest three Hordeum chilense ecotypes that differ in avoidance to rust fungi. Can J Bot 79:204–213Google Scholar
  68. Warburton M, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301CrossRefGoogle Scholar
  69. Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali M, Street D, Duc G, Stoddard FL, Maalouf F, Ogbonnaya FC, Link W, Thomas J, O’Sullivan DM (2016) A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). Plant Biotechnol J 14:177–185. CrossRefPubMedGoogle Scholar
  70. Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ziegler JU, Wahl S, Würschum T, Longin CFH, Carle R, Schweiggert RM (2015) Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites. J Agric Food Chem 63(20):5061–5071. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • C. M. Avila
    • 1
  • M. G. Mattera
    • 2
    • 4
  • C. Rodríguez-Suárez
    • 2
  • C. Palomino
    • 2
  • M. C. Ramírez
    • 2
  • A. Martin
    • 2
  • A. Kilian
    • 3
  • D. Hornero-Méndez
    • 4
  • S. G. Atienza
    • 2
    Email author
  1. 1.Área Mejora y BiotecnologíaIFAPA-Centro Alameda del ObispoCórdobaSpain
  2. 2.Institute for Sustainable AgricultureCSICCórdobaSpain
  3. 3.Diversity Arrays TechnologyUniversity of CanberraBruceAustralia
  4. 4.Departament of Food PhytochemistryInstituto de la Grasa (CSIC)SevilleSpain

Personalised recommendations