Advertisement

Euphytica

, 215:42 | Cite as

Construction of an integrated genetic linkage map and detection of quantitative trait loci for ascochyta blight resistance in faba bean (Vicia faba L.)

  • S. Sudheesh
  • R. B. E. Kimber
  • S. Braich
  • J. W. Forster
  • J. G. Paull
  • S. KaurEmail author
Article
  • 16 Downloads

Abstract

Ascochyta blight (AB), caused by Ascochyta fabae Speg., is an economically important disease that has been reported in most of the faba bean growing regions worldwide. Breeding for resistance is the most environmentally acceptable and economically feasible method to address the disease, for which a detailed understanding of the genetic basis of AB resistance is required. In the current study, a genetic linkage map based on single nucleotide polymorphisms was developed from Nura × Farah recombinant inbred line (RIL) population and contained 705 loci across 1021.8 cM. The marker information from Nura × Farah map was combined with previously published maps to generate an integrated map consisting of 1850 markers distributed across six linkage groups, with a cumulative length of 1439 cM at an average density of one marker per 0.80 cM. Parents and RIL progeny were screened for AB with two strains of A. fabae and quantitative trait locus analysis identified two genomic regions explaining up to 49% of the phenotypic variation. Evaluation of linked markers in a diverse set of faba bean genotypes validated their utility for marker assisted selection. The availability of high density genetic linkage map along with the linked markers for AB resistance provides opportunities for genomics-assisted breeding, map based gene isolation and comparative genetics in faba bean.

Keywords

Legume Single nucleotide polymorphism Genetic linkage mapping Fungal disease resistance 

Abbreviations

BLAST

Basic local alignment search tool

bp

Base pair

CDS

Coding DNA sequences

cM

Centimorgan

DAI

Days after inoculation

DNA

Deoxyribonucleic acid

EST

Expressed sequence tag

GBS

Genotyping-by-sequencing

Gb

Giga base

LG

Linkage group

LOD

Logarithm (base 10) of odds

MAS

Marker assisted selection

NGS

Next-generation sequencing

PBA

Pulse breeding Australia

RIL

Recombinant inbred line

RNA

Ribonucleic acid

RNA-Seq

RNA sequencing technology

SNP

Single nucleotide polymorphism

SSR

Simple sequence repeats

QTL

Quantitative trait locus

Notes

Acknowledgements

This work was supported by funding from the Victorian Department of Economic Development, Jobs, Transport and Resources, Australia and the Grains Research and Development Council, Australia. The authors would like to thank Prof Ben Cocks for helpful critical comments on the manuscript.

Author contributions

SS performed transcriptome sequencing, SNP genotyping, map construction, QTL analysis, candidate gene selection, marker validation and contributed to drafting the manuscript. RBEK performed phenotyping experiments, contributed to data interpretation and assisted in drafting the manuscript. SB performed DNA extraction and assisted in SNP genotyping. JWF co-conceptualised the project and assisted in drafting the manuscript. JGP developed the mapping population, performed the phenotyping experiments, contributed to data interpretation and assisted in drafting the manuscript. SK co-conceptualised and coordinated the project and assisted in drafting the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2019_2365_MOESM1_ESM.xlsx (158 kb)
Supplementary material 1 (XLSX 158 kb)
10681_2019_2365_MOESM2_ESM.xlsx (11 kb)
Supplementary material 2 (XLSX 11 kb)
10681_2019_2365_MOESM3_ESM.pptx (63 kb)
Supplementary material 3 (PPTX 63 kb)
10681_2019_2365_MOESM4_ESM.xlsx (114 kb)
Supplementary material 4 (XLSX 114 kb)
10681_2019_2365_MOESM5_ESM.xlsx (27 kb)
Supplementary material 5 (XLSX 26 kb)
10681_2019_2365_MOESM6_ESM.pptx (99 kb)
Supplementary material 6 (PPTX 99 kb)
10681_2019_2365_MOESM7_ESM.pptx (46 kb)
Supplementary material 7 (PPTX 46 kb)
10681_2019_2365_MOESM8_ESM.pptx (185 kb)
Supplementary material 8 (PPTX 184 kb)
10681_2019_2365_MOESM9_ESM.pptx (44 kb)
Supplementary material 9 (PPTX 44 kb)
10681_2019_2365_MOESM10_ESM.xlsx (9 kb)
Supplementary material 10 (XLSX 9 kb)
10681_2019_2365_MOESM11_ESM.pptx (49 kb)
Supplementary material 11 (PPTX 48 kb)
10681_2019_2365_MOESM12_ESM.xlsx (16 kb)
Supplementary material 12 (XLSX 16 kb)

References

  1. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517CrossRefGoogle Scholar
  2. Arafa RA, Rakha MT, Soliman NEK, Moussa OM, Kamel SM, Shirasawa K (2017) Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies. PLoS ONE 12:e0189951CrossRefGoogle Scholar
  3. Arbaoui M, Link W, Satovic Z, Torres AM (2008) Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.). Euphytica 164:93–104CrossRefGoogle Scholar
  4. Arun-Chinnappa KS, McCurdy DW (2015) De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research. Front Plant Sci 6:217CrossRefGoogle Scholar
  5. Atienza S, Palomino C, Gutiérrez N, Alfaro C, Rubiales D, Torres A, Ávila C (2016) QTLs for ascochyta blight resistance in faba bean (Vicia faba L.): validation in field and controlled conditions. Crop Pasture Sci 67:216–224CrossRefGoogle Scholar
  6. Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L.). Theor Appl Genet 108:1071–1078CrossRefGoogle Scholar
  7. Bargale M, Billore S (1990) Parental diversity, heterosis and inbreeding depression over environments in faba bean. Crop Improve 17:133–137Google Scholar
  8. Bayer M, Milne I, Stephen G, Shaw P, Cardle L, Wright F, Marshall D (2011) Comparative visualization of genetic and physical maps with Strudel. Bioinformatics 27:1307–1308.  https://doi.org/10.1093/bioinformatics/btr111 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boutet G, Alves Carvalho S, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel ML, Rivière N, Baranger A (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics 17:121.  https://doi.org/10.1186/s12864-016-2447-2 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Braich S, Sudheesh S, Forster J, Kaur S (2017) Characterisation of faba bean (Vicia faba L.) transcriptome using RNA-Seq: sequencing, De Novo assembly, annotation, and expression analysis. Agronomy 7:53CrossRefGoogle Scholar
  11. Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutiérrez N, Ellwood SR, Phan HT, Cubero JI, Torres AM (2012) Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet 125:1767–1782CrossRefGoogle Scholar
  12. Cubero JI (1982) Interspecific hybridization in Vicia. In: Hawtin G, Webb C (eds) Faba bean improvement: proceedings of the faba bean conference held in Cairo, March 7–11, 1981. Springer, Dordrecht, pp 91–108.  https://doi.org/10.1007/978-94-009-7499-9_9
  13. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CrossRefGoogle Scholar
  14. Davidson J, Smetham G, Russ MH, McMurray L, Rodda M, Krysinska-Kaczmarek M, Ford R (2016) Changes in aggressiveness of the Ascochyta lentis population in Southern Australia. Front Plant Sci 7:393.  https://doi.org/10.3389/fpls.2016.00393 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Díaz-Ruiz R, Satovic Z, Avila CM, Alfaro CM, Gutierrez MV, Torres AM, Román B (2009) Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.). Crop Pasture Sci 60:353–361CrossRefGoogle Scholar
  16. Ellwood SR, Phan HT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9:380CrossRefGoogle Scholar
  17. El-Rodeny W, Kimura M, Hirakawa H, Sabah A, Shirasawa K, Sato S, Tabata S, Sasamoto S, Watanabe A, Kawashima K (2014) Development of EST-SSR markers and construction of a linkage map in faba bean (Vicia faba). Breed Sci 64:252–263CrossRefGoogle Scholar
  18. FAO. http://faostat.fao.org. Accessed 18 Oct 2017
  19. Flavell R, Bennett M, Smith J, Smith D (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269CrossRefGoogle Scholar
  20. Gnanasambandam A, Paull J, Torres A, Kaur S, Leonforte T, Li H, Zong X, Yang T, Materne M (2012) Impact of molecular technologies on faba bean (Vicia faba L.) breeding strategies. Agronomy 2:132–166CrossRefGoogle Scholar
  21. Gutiérrez N, Palomino C, Satovic Z, Ruiz-Rodríguez MD, Vitale S, Gutiérrez MV, Rubiales D, Kharrat M, Amri M, Emeran A (2013) QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Mol Breed 32:909–922CrossRefGoogle Scholar
  22. Javid M, Rosewarne GM, Sudheesh S, Kant P, Leonforte A, Lombardi M, Kennedy PR, Cogan NOI, Slater AT, Kaur S (2015) Validation of molecular markers associated with boron tolerance, powdery mildew resistance and salinity tolerance in field peas. Front Plant Sci 6:917.  https://doi.org/10.3389/fpls.2015.00917 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kaur S, Kimber RB, Cogan NOI, Materne M, Forster JW, Paull JG (2014) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci 217:47–55CrossRefGoogle Scholar
  24. Khazaei H (2014) Leaf traits associated with drought adaptation in faba bean (Vicia faba L.). Dissertation. University of Helsinki, Helsinki, 26-09-2014Google Scholar
  25. Kimber RBE, Davidson JA, Russ M, Paull J (2013) The Poison Gate is unlocked! Resistance breakdown to Ascochyta fabae in Australian faba beans. In: Inaugural pulse breeding australia conference, Adelaide, 20–23 October 2013Google Scholar
  26. Kimber RBE, Davidson JA, Blake SN, Russ MH, Paull JG (2016) Virulence dynamics within Ascochyta fabae populations in Australia. In: 4th International ascochyta workshop, Troia, 10–11 October 2016Google Scholar
  27. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175.  https://doi.org/10.1111/j.1469-1809.1943.tb02321.x CrossRefGoogle Scholar
  28. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993CrossRefGoogle Scholar
  29. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li H, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics 16:216.  https://doi.org/10.1186/s12864-015-1424-5 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li Y, Ruperao P, Batley J, Edwards D, Davidson J, Hobson K, Sutton T (2017) Genome analysis identified novel candidate genes for ascochyta blight resistance in Chickpea using whole genome re-sequencing data. Front Plant Sci 8:359PubMedPubMedCentralGoogle Scholar
  33. Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014) An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104.  https://doi.org/10.1186/1471-2164-15-104 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Luo W, Huang M, Guo T, Xiao W, Wang J, Yang G, Liu Y, Wang H, Chen Z, Zhuang C (2016) Marker assisted selection for rice blast resistance genes Pi2 and Pi9 through high resolution melting of a gene targeted amplicon. Plant Breed 136:67–73CrossRefGoogle Scholar
  35. Ma Y, Sy Bao, Yang T, Jg Hu, Jp Guan, He Yh, Wang XJ, Yl Wan, Xl Sun, Jy Jiang (2013) Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers. Plant Breed 132:397–400CrossRefGoogle Scholar
  36. Maalouf F, Khalil S, Ahmed S, Akintunde AN, Kharrat M, El Shama’a K, Hajjar S, Malhotra RS (2011) Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res 124:288–294CrossRefGoogle Scholar
  37. Mace E, Tai S, Innes D, Godwin I, Hu W, Campbell B, Gilding E, Cruickshank A, Prentis P, Wang J, Jordan D (2014) The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biol 14:253CrossRefGoogle Scholar
  38. Manly KF, Cudmore J, Robert H, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932.  https://doi.org/10.1007/s00335-001-1016-3 CrossRefPubMedGoogle Scholar
  39. Mardani Z, Rabiei B, Sabouri H, Sabouri A (2013) Mapping of QTLs for germination characteristics under non-stress and drought stress in rice. Rice Sci 20:391–399.  https://doi.org/10.1016/S1672-6308(13)60150-X CrossRefGoogle Scholar
  40. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA (2016) Marker-assisted introgression of broad-spectrum blast resistance genes into the cultivated MR219 rice variety. J Sci Food Agric 97:2810–2818.  https://doi.org/10.1002/jsfa.8109 CrossRefPubMedGoogle Scholar
  41. O’Sullivan DM, Angra D (2016) Advances in faba bean genetics and genomics. Front Genet 7:150.  https://doi.org/10.3389/fgene.2016.00150 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Patil NY, Klein RR, Williams CL, Collins SD, Knoll JE, Burrell AM, Anderson WF, Rooney WL, Klein PE (2017) Quantitative trait loci associated with anthracnose resistance in sorghum. Crop Sci 57:877–890CrossRefGoogle Scholar
  43. Patto MV, Torres AM, Koblizkova A, Macas J, Cubero J (1999) Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants. Theor Appl Genet 98:736–743CrossRefGoogle Scholar
  44. Pulse Breeding Australia. PBA Varieties and Brochures. https://grdc.com.au/research/trials,-programs-and-initiatives/pba/link3.aspx. Accessed 18 Oct 2017
  45. Rodda M, Sudheesh S, Javid M, Noy D, Gnanasambandam A, Slater A, Rosewarne G, Kaur S (2017) Breeding for boron tolerance in lentil (Lens culinaris Medik.) using a high-throughput phenotypic assay and molecular markers. Mol breeding article under reviewGoogle Scholar
  46. Román B, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45:1057–1063CrossRefGoogle Scholar
  47. Román B, Satovic Z, Avila CM, Rubiales D, Moreno MT, Torres AM (2003) Locating genes associated with Ascochyta fabae resistance in Vicia faba. Crop Pasture Sci 54:85–90CrossRefGoogle Scholar
  48. Rubiales D, Fondevilla S (2012) Future prospects for ascochyta blight resistance breeding in cool season food legumes. Front Plant Sci 3:27CrossRefGoogle Scholar
  49. Satovic Z, Torres AM, Cubero JI (1996) Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics. Theor Appl Genet 93:1130–1138CrossRefGoogle Scholar
  50. Satovic Z, Avila CM, Cruz-Izquierdo S, Díaz-Ruíz R, García-Ruíz GM, Palomino C, Gutiérrez N, Vitale S, Ocaña-Moral S, Gutiérrez MV (2013) A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genomics 14:932CrossRefGoogle Scholar
  51. Singh B, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer, New DelhiCrossRefGoogle Scholar
  52. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744.  https://doi.org/10.1111/j.1365-313X.1993.00739.x CrossRefGoogle Scholar
  53. Stoddard F, Nicholas A, Rubiales D, Thomas J, Villegas-Fernández A (2010) Integrated pest management in faba bean. Field Crops Res 115:308–318CrossRefGoogle Scholar
  54. Sudheesh S, Lombardi M, Leonforte A, Cogan NOI, Materne M, Forster J, Kaur S (2015) Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. Plant Mol Biol Rep 1:13.  https://doi.org/10.1007/s11105-014-0837-7 CrossRefGoogle Scholar
  55. Sudheesh S, Verma P, Forster JW, Cogan NOI, Kaur S (2016) Generation and characterisation of a reference transcriptome for lentil (Lens culinaris Medik.). Int J Mol Sci 17:1887CrossRefGoogle Scholar
  56. Takuno S, Terauchi R, Innan H (2012) The power of QTL mapping with RILs. PLoS ONE 7:e46545.  https://doi.org/10.1371/journal.pone.0046545 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Torres AM, Weeden N, Martin A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945CrossRefGoogle Scholar
  58. Van de Ven W, Waugh R, Duncan N, Ramsay G, Dow N, Powell W (1991) Development of a genetic linkage map in Vicia faba using molecular and biochemical techniques. Asp Appl Biol 27:49–54Google Scholar
  59. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefGoogle Scholar
  60. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11:726.  https://doi.org/10.1186/1471-2164-11-726 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang S, Basten C, Zeng Z (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  62. Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali M, Street D (2016) A SNP based consensus genetic map for synteny based trait targeting in faba bean (Vicia faba L.). Plant Biotechnol J 14:177–185CrossRefGoogle Scholar
  63. Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps integer linear programming. IEEE/ACM Trans Comput Biol Bioinf 8:381–394CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • S. Sudheesh
    • 1
  • R. B. E. Kimber
    • 2
  • S. Braich
    • 1
  • J. W. Forster
    • 1
    • 3
  • J. G. Paull
    • 2
  • S. Kaur
    • 1
    Email author
  1. 1.Agriculture Victoria, AgriBio, Centre for AgriBioscienceBundooraAustralia
  2. 2.School of Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia
  3. 3.School of Applied Systems BiologyLa Trobe UniversityBundooraAustralia

Personalised recommendations