, 215:37 | Cite as

Multiallelic digenic control of vernalization requirement in carrot (Daucus carota L.)

  • Josefina Wohlfeiler
  • María S. Alessandro
  • Pablo F. Cavagnaro
  • Claudio R. GalmariniEmail author


Carrots are typically classified as annual or biennial, depending on their vernalization requirement for flowering, a trait that is genetically-conditioned. Wild carrots are predominantly annual, requiring less hours of cold temperatures for flower induction, whereas most cultivated carrots are biennial (i.e., they have higher cold temperature requirements). After vernalization, if followed by long days, floral stem elongation and flowering take place. Previous studies using F2 and BC1 families derived from crosses between an early and a late-flowering line revealed segregation ratios consistent with a monogenic trait, with annual habit being dominant over biennial. In this work, we studied inheritance and segregation of the vernalization requirement in carrot F2 populations derived from crosses involving carrots of different genetic backgrounds and geographical origins. Nine crosses between biennial and annual phenotypes were analyzed, for 2 years, by means of percentage of flowering plants (parental lines, F1 and F2 families were sown in the fall for adequate discrimination between annual and biennial plants). Based on the obtained segregation ratios, a genetic model for this trait was proposed. The results are consistent with a model of two genes (Vrn-A and Vrn-B) with three alleles controlling the vernalization requirement. Dominance of annuality was clear for both genes, with A1 allele having an epistatic effect over Vrn-B. Vrn-A and Vrn-B interact generating different vernalization requirement levels.


Vernalization Daucus carota Flowering Inheritance 



This work was funded by Argentine National Agency for Scientific and Technological Promotion through grant ‘PICT-2014-1245’, and by the National Vegetable, Flower and Aromatics Program of INTA, Argentina. The authors acknowledge Dr. Philipp Simon for providing germplasm of some of the lines included in the study, and Dr. Pablo Diego Asprelli for fruitful discussions on the segregation analysis.

Supplementary material

10681_2019_2360_MOESM1_ESM.xlsx (10 kb)
Supplementary material 1 (XLSX 9 kb)
10681_2019_2360_MOESM2_ESM.xlsx (33 kb)
Supplementary material 2 (XLSX 32 kb)
10681_2019_2360_MOESM3_ESM.xlsx (14 kb)
Supplementary material 3 (XLSX 14 kb)


  1. Abe J, Guan GP, Shimamoto Y (1997) A gene complex for annual habit in sugar beet (Beta vulgaris L.). Euphytica 94:129–135CrossRefGoogle Scholar
  2. Abegg FA (1936) A genetic factor for the annual habit in beets and linkage relationship. J Argic Res 53:493–511Google Scholar
  3. Alessandro MS (2011) Estudio genético y molecular de la respuesta a la vernalización en zanahoria (Daucus carota L.). Ph.D. thesis, PROBIOL, Universidad Nacional de Cuyo, ArgentinaGoogle Scholar
  4. Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Am Soc Hort Sci 132:525–529CrossRefGoogle Scholar
  5. Alessandro MS, Galmarini CR, Ali A, Simon PW (2010) Evaluation of vernalization requirement in different carrot populations. 34 International Carrot Conference, EEUUGoogle Scholar
  6. Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 126:415–423CrossRefGoogle Scholar
  7. Amasino RM (2004) Vernalization, competence and the epigenetic memory of winter. Plant Cell 16:2553–2559CrossRefGoogle Scholar
  8. Atherton JG, Basher EA, Brewster JL (1984) The effects of photoperiod on flowering in carrot. J Hort Sci 59:213–215CrossRefGoogle Scholar
  9. Atherton JG, Craigon J, Basher EA (1990) Flowering and bolting in carrot. I. Juvenility, cardinal temperatures and thermal times for vernalization. J Hort Sci 65:423–429CrossRefGoogle Scholar
  10. Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci 101:15670–15675CrossRefGoogle Scholar
  11. Camargo LEA, Osborn TC (1996) Mapping loci controlling flowering time in Brassica oleracea. Theor Appl Genet 92:610–616CrossRefGoogle Scholar
  12. Dias Tagliacozzo GM, Válio IFM (1994) Effect of vernalization on flowering of Daucus carota (Cvs Nantes and Brasilia). Rev Bras de Fisiol Veg 6:71–73Google Scholar
  13. Dickson MH (1958) The physiology and inheritance of flowering in carrots. Ph.D. thesis, Department of Horticulture, Michigan State University of Agriculture and Applied ScienceGoogle Scholar
  14. Galmarini CR, Della Gaspera P (1996) Determinación de requerimientos de prevernalización en zanahorias (Daucus carota L.) anuales. Actas de la XXI Reun Argent de Fisiol Veg: 82. MendozaGoogle Scholar
  15. Galmarini CR, Borgo R, Tizio R (1992) Determination of a prevernalization phase in carrot (Daucus carota L.) cv. Flakkee Turrialba 42:140–142Google Scholar
  16. Gendall AR, Levy YY, Wilson A, Dean C (2001) The Vernalization 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535CrossRefGoogle Scholar
  17. Hiller LK, Kelly WC (1979) The effect of post-vernalization temperature on seedstalk elongation and flowering in carrots. J Am Soc Hort Sci 104:253–257Google Scholar
  18. Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot 100:930–938CrossRefGoogle Scholar
  19. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórnil A, Moranska E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genet 48:657CrossRefGoogle Scholar
  20. Lang A (1986) Hyoscyamus niger. In: Halevy AH, Boca Raton FL (eds) CRC handbook of flowering, 144–186Google Scholar
  21. Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243–246CrossRefGoogle Scholar
  22. Li F, Sun J, Wang D, Bai S, Clarke AK, Holm M (2014) The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways. PLoS ONE 9:e87544CrossRefGoogle Scholar
  23. Michaels SD, Amasino RM (2000) Memories of winter: vernalization and the competence to flower. Plant Cell Environ 23:1145–1153CrossRefGoogle Scholar
  24. Ou CG, Mao JH, Liu LJ, Li CJ, Ren HF, Zhao ZW, Zhuang FY (2017) Characterizing genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Plant Biol 19:286–297CrossRefGoogle Scholar
  25. Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM (2007) Evolutionary conservation of the FLOWERING LOCUS C–mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176:295–307CrossRefGoogle Scholar
  26. Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable umbelliferae. CABI Publ, New YorkGoogle Scholar
  27. Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Gene Dev 20:898–912CrossRefGoogle Scholar
  28. Sung S, Schmitz RJ, Amasino RM (2006) A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Gene Dev 20:3244–3248CrossRefGoogle Scholar
  29. Taiz L, Zeiger E (2002) Plant physiology. 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  30. Tranquilli G, Dubcovsky J (2000) Epistatic interaction between vernalization genes Vrn-Am 1 and Vrn-Am2 in Triticum monococcum. J Hered 91:304–306CrossRefGoogle Scholar
  31. Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci 100:13099–13104CrossRefGoogle Scholar
  32. Van Deynze A, Peter Pauls K (1994) The inheritance of seed colour and vernalization requirement in Brassica napus using double haploid populations. Euphytica 74:77–83CrossRefGoogle Scholar
  33. Whitaker TW, Sherf AF, Lange WH, Nicklow CW, Radewald JD (1970) Carrot production in the United States. Agriculture Handbook No. 375, Agricultural Research Service, US Department of Agriculture, Washington, DCGoogle Scholar
  34. Wijnheijmer EHM, Brandenburg WA, Ter Borg SJ (1989) Interactions between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Euphytica 40:147–154CrossRefGoogle Scholar
  35. Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 48:458–470CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Josefina Wohlfeiler
    • 1
  • María S. Alessandro
    • 1
  • Pablo F. Cavagnaro
    • 1
    • 2
    • 3
  • Claudio R. Galmarini
    • 1
    • 2
    • 3
    Email author
  1. 1.Instituto Nacional de Tecnología Agropecuaria (INTA)La Consulta, MendozaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos AiresBuenos AiresArgentina
  3. 3.Facultad de Ciencias AgrariasUniversidad Nacional de CuyoLuján de Cuyo, MendozaArgentina

Personalised recommendations