Advertisement

Euphytica

, 215:30 | Cite as

QTLs associated with flesh quality traits in an elite × elite watermelon population

  • Leigh Ann Fall
  • Penelope Perkins-Veazie
  • Guoying Ma
  • Cecilia McGregorEmail author
Article
  • 41 Downloads

Abstract

Consumers prefer watermelon with sweet, red flesh, and the presence of lycopene, citrulline and arginine phytochemicals helpful for human health is an additional bonus. Breeders often select fruit with desirable flesh characteristics based on soluble solids content (Brix) and visual flesh color. Although marker assisted selection (MAS) of flesh traits would advance germplasm selection efficiency, the low heritability of Brix and lycopene content in red fleshed watermelon has hampered marker development. Here we describe the identification of QTLs associated with lycopene content, the amino acids citrulline and arginine, and the content of individual sugar (sucrose, glucose, fructose) in an elite × elite recombinant inbred line (RIL) population. Brix was most highly correlated with total sugars and glucose content, lycopene content was correlated with sucrose content, and citrulline and arginine content showed no correlation. A region on chromosome 5 was associated with sucrose, glucose, and fructose accumulation, while stable arginine content QTLs were identified on chromosomes 2 and 5.

Keywords

Citrullus lanatus Brix Sugar Fructose Sucrose Glucose Lycopene Citrulline Arginine 

Notes

Acknowledgements

The authors thank Yihua Chen, Kristin Adams, Jessica Norton, and Daniel Powell for their invaluable help during harvest, collection, and preparation of samples.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10681_2019_2356_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. Akashi K, Miyakel C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. Fed Eur Biomed Soc 508(3):438–442CrossRefGoogle Scholar
  2. Akashi K, Mifune Y, Morita K, Ishitsuka S, Tsujimoto H, Ishihara T (2017) Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. J Sci Agric 97:479–487CrossRefGoogle Scholar
  3. Baldwin EA (2008) Flavor. In: Gross K (ed) Agriculture handbook, vol 66. USDA. Beltsville, Maryland, pp 126–148Google Scholar
  4. Bang H, Kim S, Leskovar D, King S (2007) Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Mol Breed 20(1):63–72.  https://doi.org/10.1007/s11032-006-9076-4 CrossRefGoogle Scholar
  5. Bogdan M, Doerge RW (2005) Biased estimators of quantitative trait locus heritability and location in interval mapping. Hered 95:476–484CrossRefGoogle Scholar
  6. Brandt S, Pék Z, Barna É, Lugasi A, Helyes L (2006) Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J Sci Food Agric 86(4):568–572.  https://doi.org/10.1002/jsfa.2390 CrossRefGoogle Scholar
  7. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefGoogle Scholar
  8. Brown AC Jr, Summers WL (1985) Carbohydrate accumulation and color development in watermelon. J Am Soc Hort 11(5):683–687Google Scholar
  9. Brueckner B, Schonhof I, Schroedter R, Kornelson C (2007) ) Improved flavour acceptability of cherry tomatoes. Target group: children. Food Qual Prefer 18(1):152–160.  https://doi.org/10.1016/j.foodqual.2005.09.011 CrossRefGoogle Scholar
  10. Cheng Y, Luan F, Wang X et al (2016) Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci Hortic 202:25–31.  https://doi.org/10.1016/j.scienta.2016.01.004 CrossRefGoogle Scholar
  11. Cheng HM, Koutsidis G, Lodge JK, Ashor A, Siervo M, Lara J (2017) Tomato and lycopene supplementation and cardiovascular risk factors: a systematic review and meta-analysis. Atherosclerosis 257:100–108.  https://doi.org/10.1016/j.atherosclerosis.2017.01.009 CrossRefPubMedGoogle Scholar
  12. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  13. Corey KA, Schlimme DV (1988) Relationship of rind gloss and groundspot color to flesh quality of watermelon fruits during maturation. Sci Hortic 34:211–218CrossRefGoogle Scholar
  14. Davis AR, Fish WW, Perkins-Veazie P (2003) A rapid hexane-free method for analyzing lycopene content in watermelon. J Food Sci 68:328–332CrossRefGoogle Scholar
  15. Davis AR, Webber CLI, Fish WW, Wehner TC, King S, Perkins-Veazie P (2011) L-citrulline levels in watermelon cultigens tested in two environments. Hort Sci 46(12):1572–1575Google Scholar
  16. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most effective biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538CrossRefGoogle Scholar
  17. Dirlewanger E, Moing A, Rothan C et al (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  18. Elmstrom GW, Davis PL (1981) Sugars in developing and mature fruits of several watermelon cultivars. J Amer Soc Hort Sci 106:330–333Google Scholar
  19. Evans CB (2008) Consumer preferences for watermelons: a conjoint analysis. Thesis, Auburn UniversityGoogle Scholar
  20. Fish WW (2014) The expression of citrulline and other members of the arginine metabolic family in developing watermelon fruit. International J Agric Innovations Res 2(5):665–672Google Scholar
  21. Fulton TM, Bucheli P, Voirol E, Lopez J, Petiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177CrossRefGoogle Scholar
  22. Goubel F, Vanhoutte C, Allaf O, Verleye M, Gillardin JM (1997) Citrulline malate limits increase in muscle fatigue induced by bacterial endotoxins. J Physiol Pharmacology 75:205–207CrossRefGoogle Scholar
  23. Guan Y, Peace C, Rudell D, Verma S, Evans K (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breeding 35(6):1–13.  https://doi.org/10.1007/s11032-015-0334-1 CrossRefGoogle Scholar
  24. Guo S, Zhang J, Sun H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genet 45(1):51–58.  https://doi.org/10.1038/ng.2470 CrossRefPubMedGoogle Scholar
  25. Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106(5):779–785.  https://doi.org/10.1007/s00122-002-1030-1 CrossRefPubMedGoogle Scholar
  26. Henderson WR, Scott GH, Wehner TC (1998) Interaction of flesh color genes in watermelon. J Hered 89:50–53CrossRefGoogle Scholar
  27. Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–111Google Scholar
  28. Jayaprakasha GK, Murthy KNC, Patil BS (2011) Rapid HPLC-UV method for quantification of L-citrulline in watermelon and its potential role on smooth muscle relaxation markers. Food Chem 127:240–248CrossRefGoogle Scholar
  29. Jeffrey C (1978) Further notes on Cucurbitaceae IV: some new-world taxa. Kew Bull 33:347–380CrossRefGoogle Scholar
  30. Joshi V, Fernie AR (2017) Citrulline metabolism in plants. Amino Acids.  https://doi.org/10.1007/s00726-017-2468-4 CrossRefPubMedGoogle Scholar
  31. Kader AA (2008) Flavor quality of fruits and vegetables. J Sci Food Agric 88(11):1863–1868.  https://doi.org/10.1002/jsfa.3293 CrossRefGoogle Scholar
  32. Kang B, Zhao W, Hou Y, Tian P (2010) Expression of carotenogenic genes during the development and ripening of watermelon fruit. Scientia Hort 124(3):368–375.  https://doi.org/10.1016/j.scienta.2010.01.027 CrossRefGoogle Scholar
  33. Kuti JO, Konuru HB (2005) Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. J Sci Food Agric 85(12):2021–2026.  https://doi.org/10.1002/jsfa.2205 CrossRefGoogle Scholar
  34. Li X, Quigg RJ, Zhou J, Xu S, Masinde G, Mohan S, Baylink D (2006) A critical evaluation of the effect of population size and phenotypic measurement on QTL detection and localization using a large F2 murine mapping population. Genet Mol Biol 29:166–173CrossRefGoogle Scholar
  35. Li H, Hearne S, Banziger M, Li Z, Wang J (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Hered 105:257–267CrossRefGoogle Scholar
  36. Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J (2007) A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exper Bot 58(15):4161–4171.  https://doi.org/10.1093/jxb/erm273 CrossRefGoogle Scholar
  37. Liu S, Gao P, Wang X, Davis A, Baloch AM, Luan F (2015) Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica 202:411–426.  https://doi.org/10.1007/s10681-014-1308-9 CrossRefGoogle Scholar
  38. Ma C, Sun Z, Chen C, Zhang L, Zhu S (2014) Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chem 145:784–788.  https://doi.org/10.1016/j.foodchem.2013.08.135 CrossRefPubMedGoogle Scholar
  39. Maynard DN (2001) An introduction to the watermelon. In: Maynard DN (ed) Characteristics, production and marketing. ASHS Press, Alexandria, pp 9–20Google Scholar
  40. McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357.  https://doi.org/10.1007/s00726-010-0598-z CrossRefPubMedGoogle Scholar
  41. Mitcham B, Cantwell M, Kader A (1996) Methods for determining quality of fresh commodities. Perishables Handling Newsletter 85:1–5Google Scholar
  42. NASS (2015) Vegetables 2016 summary. United States Department of Agriculture, WasingtonGoogle Scholar
  43. Nyquist WE, Baker R (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322CrossRefGoogle Scholar
  44. Pangborn RM (1963) Relative taste intensities of selected sugars and organic acids. Food Science 28:726–733CrossRefGoogle Scholar
  45. Pardo JE, Gomez R, Tardaguila J, Amo A, Varon R (1997) Quality evaluation of watermelon varieties (Citrullus vulgaris S.). J Food Quality 20:547–557CrossRefGoogle Scholar
  46. Parris GK (1949) Watermelon breeding. Econ Bot 3:193–212CrossRefGoogle Scholar
  47. Perkins-Veazie P, Collins JK, Pair SD, Roberts W (2001) Lycopene content differs among red-fleshed watermelon cultivars. J Sci Food Agric 81:983–987CrossRefGoogle Scholar
  48. Perkins-Veazie P, Collins J, Hassell R et al (2005) Lycopene content of mini watermelon varieties grown at four locations. Hort Sci 40(4):1091Google Scholar
  49. Poole CF (1944) Genetics of cultivated cucurbits. J Hered 35:122–128CrossRefGoogle Scholar
  50. Pratt HK (1971) The biochemistry of fruits and their products. In: Hulme AC (ed) Melons, vol 2. Academic Press, London, pp 207–232Google Scholar
  51. Rekha C, Poornima G, Manasa M, Abhipsa V, Pavithra Devi J, Vijay Kumar HT, Prashith Kekuda TR (2012) Ascorbic acid, total phenol content and antioxidant acitivity of fresh juices of four ripe and unripe citrus fruits. Chem Sci Trans 1(2):303–310CrossRefGoogle Scholar
  52. Ren Y, McGregor C, Zhang Y et al (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14(33):1–11Google Scholar
  53. Rimando AM, Perkins-Veazie PM (2005) Determination of citrulline in watermelon rind. J Chromatography A 1078(1–2):196–200.  https://doi.org/10.1016/j.chroma.2005.05.009 CrossRefGoogle Scholar
  54. Sandlin K, Prothro J, Heesacker A et al (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125(8):1603–1618.  https://doi.org/10.1007/s00122-012-1938-z CrossRefPubMedGoogle Scholar
  55. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3):591–611.  https://doi.org/10.2307/2333709 CrossRefGoogle Scholar
  56. Telef N, Stammitti B, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P (2006) Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol 62:453–469.  https://doi.org/10.1007/s11103-006-9033-y CrossRefPubMedGoogle Scholar
  57. Wang S, Basten CJ, Zeng ZB (2011) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  58. Waugh WH, Daeschner CWI, Files BA, McConnell ME, Strandjord SE (2001) Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results. J Natl Medical Assn 93(10):363–371Google Scholar
  59. Wehner TC, Naegele RP, Perkins-Veazie P (2017) Heritability and genetic variance components associated with citrulline, arginine, and lycopene content in diverse watermelon cultigens. Hort Sci 52(7):936–940.  https://doi.org/10.21273/HORTSCI11255-16 CrossRefGoogle Scholar
  60. Wu G, Bazer FW, Kim SW (2007) New developments in amino acid research. In: Rosati A, Tewolde A, Mosconi C (eds) Animal production and animal science worldwide. Wageningen Academic Publishers, Wageningen, pp 299–315Google Scholar
  61. Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37(1):153–168.  https://doi.org/10.1007/s00726-008-0210-y CrossRefPubMedGoogle Scholar
  62. Xu Y, Guo S, Zhang H, Gong G (2006) QTL analysis of soluble solids content in watermelon under different environments. In: Paper presented at the Cucurbitaceae, Asheville, North Carolina, 17–21 Sept 2006Google Scholar
  63. Xu Q, Yu K, Zhu A, Ye J, Liu Q, Zhang J, Deng X (2009) Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genom.  https://doi.org/10.1186/1471-2164-10-540 CrossRefGoogle Scholar
  64. Yativ M, Harary I, Wolf S (2010) Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis. J Plant Physiol 167(8):589–596.  https://doi.org/10.1016/j.jplph.2009.11.009 CrossRefPubMedGoogle Scholar
  65. Zhang H, Ge Y (2016) Dynamics of sugar-metabolic enzymes and sugars accumulation during watermelon (Citrullus lanatus) fruit development. Pak J Bot 48(6):2535–2538Google Scholar
  66. Zhu Q, Gao P, Liu S, Zhu Z, Amanullah S, Davis AR, Luan F (2017) Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genom.  https://doi.org/10.1186/s12864-016-3442-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Leigh Ann Fall
    • 1
  • Penelope Perkins-Veazie
    • 2
  • Guoying Ma
    • 2
  • Cecilia McGregor
    • 1
    Email author
  1. 1.Institute for Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensUSA
  2. 2.Department of Horticultural Science Plants for Human Health InstituteNorth Carolina State UniversityKannapolisUSA

Personalised recommendations