, 215:20 | Cite as

Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.)

  • Liu Liu
  • Tingting Sun
  • Xiangyu Liu
  • Yu Guo
  • Xin Huang
  • Peng GaoEmail author
  • Xuezheng WangEmail author


As an important commodity trait in melons, the rind is the most direct standard of evaluation for consumers. In this study, we obtained an F2 melon population derived from self-crossing an F1 generation from a cross between X010 (green rind with stripes) and M1-113 (white rind without stripes) and performed genetic analysis and mapping. Genetic analysis revealed that a single dominant gene (st3) controlled the striped rind trait in melons. According to bulked segregant analysis, two DNA bulks were constructed (20 striped and 20 solid-colored rind plants). Next-generation sequencing was used on two parental lines (X010 and M1-113) and two DNA bulks. The st3 gene was identified on chromosome 4 within 2.7 Mbp region. Fourty cleaved amplified polymorphic sequences (CAPS) markers were developed, and sixteen CAPS markers with polymorphisms on chromosome 4 were used for constructing a genetic linkage map, and identifying recombinants in a large F2 population with six new CAPS markers. The location of the st3 gene was narrowed to 172.8 kbp on chromosome 4 between markers M-4-28 (825,401 bp) and M-4-27 (998,261 bp). This study provides a theoretical basis for the fine mapping, cloning and functional characterization of st3.


Melon Rind stripes Bulked segregant analysis CAPS Mapping 



Authors highly acknowledged the funding granted by “The National Nature Science Foundation of China” (Grant No. 31672177), the “Academic Backbone” Project of Northeast Agricultural University (Grant No. 16XG06), the “Young Talents” Project of Northeast Agricultural University (Grant No. 14QC09), Heilongjiang Province Collegial Young Innovative Talent Training Program (Grant No. UNPYSCT-2016136), and “The National Nature Science Foundation of China” (Grant No. 31372028).


  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using Mut Map. Nat Biotechnol 30:174–178. CrossRefPubMedGoogle Scholar
  2. Baloch AM, Baloch AW, Liu S, Gao P, Baloch MJ, Wang XZ, Davis AR, Ali M, Luan FS (2016) Linkage map construction and QTL analysis of fruit traits in melon (Cucumis melo L.) based on CAPS markers. Pak J Bot 48(4):1579–1584Google Scholar
  3. Burger Y, Sa’ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, Schaffer AA (2006) Genetic variability for valuable fruit quality traits in Cucumis melo. Isr J Plant Sci 54(3):233–242. CrossRefGoogle Scholar
  4. Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, Schaffer AA (2010) Genetic diversity of Cucumis melo. Hortic Rev 36:165–198Google Scholar
  5. Cohen S, Itkin M, Yeselson Y et al (2014) The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nat Commun 5(1):4026. CrossRefPubMedGoogle Scholar
  6. Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD (2008) Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet 117(8):1345–1359. CrossRefPubMedGoogle Scholar
  7. Cuevas HE, Staub JE, Simon PW, Zalapa JE (2009) A consensus linkage map identi es genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor Appl Genet 119:741–756. CrossRefPubMedGoogle Scholar
  8. Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschbery J, Katzir N (2002) Construction of a genetic map of melon with molecular markers for horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125(3):373–384CrossRefGoogle Scholar
  9. Díaz A, Zarouri B, Fergany M, Eduardo I, Alvarez JM, Pico B, Moreno AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’ Melon (Cucumis melo L.). PLoS ONE 9(8):1–12(e104188)CrossRefGoogle Scholar
  10. Dou JL, Zhao SJ, Lu XQ, He N, Zhang L, Ali A, Kuang HH, Liu WG (2018) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet 4:947–958. CrossRefGoogle Scholar
  11. Duan JF (2016) Genetic analysis of fruit appearance characteristics and prelimininary mapping of the genes related to fruit skin color in melon. Dissertation, Hua Zhong Agricultural University (in Chinese)Google Scholar
  12. Eyberg DA, Summers WL, Hall CV (1980) The inheritance of rind color patterns in watermelon Citrullus lanatus (Thunb.), Matsum. and Nakai. HortScience 15:420Google Scholar
  13. FAO (2017) Statistics Division of Food and Agriculture Organization of the United Nations. FAOSTAT. Accessed 30 May 2017
  14. Feder A, Burger J, Gao S, Lewinsohn E, Katzir N, Schaffer AA, Meir A, Davidovich-Rikanati R, Portnoy V, Gal-On A, Fei ZJ, Kashi Y, Tadmor Y (2015) A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in Cucumis melo. Plant Physiol 169(3):1714–1726. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei ZJ, Xu YM, Mao LY, Jiao C (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 94(1):169–191. CrossRefPubMedGoogle Scholar
  16. Gama RNCS, Santos CAF, Dias RCS, Alves JCSF, Nogueira TO (2015) Microsatellite markers linked to the locus of the watermelon fruit stripe pattern. Genet Mol Res 14(1):269–276. CrossRefPubMedGoogle Scholar
  17. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121(3):511–533. CrossRefPubMedGoogle Scholar
  18. Kang SI, Rahim MA, Afrin KS, Jung HJ, Kim HT, Park JI, Nou IS (2018) Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato. Hortic Environ Biotechnol 59(3):435–445. CrossRefGoogle Scholar
  19. Kim H, Han D, Kang J, Choi Y, Levi A, Lee GP, Park Y (2015) Sequence-characterized amplified polymorphism markers for selecting rind stripe pattern in watermelon (Citrullus lanatus L.). Hortic Environ Biotechnol 56(3):341–349. CrossRefGoogle Scholar
  20. Kumar R, Wehner TC (2011) Discovery of second gene for solid dark green versus light green rind pattern in watermelon. J Hered 102(4):489–493. CrossRefPubMedGoogle Scholar
  21. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25(16):2078–2079. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li B, Zhao YL, Zhu QL, Zhang ZP, Fan C, Amanullah S, Gao P, Luan FS (2017) Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Sci Hortic 220:160–167. CrossRefGoogle Scholar
  24. Lida A, Kazuoka T, Torikai S, Kikuchi H, Oeda K (2000) A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J 24(2):191–203CrossRefGoogle Scholar
  25. López-Sesé AI, Staub JE, Gómez-Guillamón ML (2003) Genetic analysis of Spanish melon (Cucumis melo L.) germplasm using a standardized molecular-marker array and geographically diverse reference accessions. Theor Appl Genet 108(1):41–52. CrossRefPubMedGoogle Scholar
  26. Lou L (2009) Inheritance of fruit characteristics in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Dissertation, North Carolina State UniversityGoogle Scholar
  27. Lou L, Wehner TC (2016) Qualitative inheritance of external fruit traits in watermelon. HortScience 51(5):487–496CrossRefGoogle Scholar
  28. Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127(7):1491–1499. CrossRefPubMedGoogle Scholar
  29. Luan F, Delannay I, Staub JE (2008) Chinese melon (Cucumis melo L.) diversity analyses provide strategies for germplasm curation genetic improvement, and evidentiary support of domestication patterns. Euphytica 164(2):445–461. CrossRefGoogle Scholar
  30. Meng L, Li H, Zhang LY, Wang JK (2015) QTL Ici mapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3(3):269–283. CrossRefGoogle Scholar
  31. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in septic genomic regions by using segregating populations. Proc Natl Acad Sci 88(21):9828–9832. CrossRefPubMedGoogle Scholar
  32. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108(4):750–758. CrossRefPubMedGoogle Scholar
  33. Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez EM, Gómez P, Monforte AJ, Cañizares J, Picó B (2017) An SNP-based sa turated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genom 18(1):94. CrossRefGoogle Scholar
  34. Porter DR (1937) Inheritance of certain fruit and seed characters in watermelons. Hilgardia 10(12):489–509. CrossRefGoogle Scholar
  35. Ruggieri V, Alexiou KG, Morata J, Argyris J, Pujol M, Yano R, Nonaka S, Ezura H, Latrasse D, Boualem A (2018) An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10(6):297–304. CrossRefPubMedGoogle Scholar
  37. Song M, Wei Q, Wang J, Fu W, Qin X, Lu X (2018) Fine mapping of CsVYL, conferring virescent leaf through the regulation of chloroplast development in cucumber. Plant Sci 9:432. CrossRefGoogle Scholar
  38. Su XM, Yang WC, Huang ZJ, Wang XX, Guo YM, Du YC, Gao JC (2018) Analysis and fine mapping of a gene controlling the folded-leaf phenotype of a mutant tomato line. Euphytica 214(6):97. CrossRefGoogle Scholar
  39. Tadmor Y, Burger J, Yaakov I, Feder A, Libhaber SE, Portnoy V, Meir A, Tzuri G, Saar U, Rogachev I (2010) Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. J Agric Food Chem 58(19):10722–10728. CrossRefPubMedGoogle Scholar
  40. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1):5e-5. CrossRefGoogle Scholar
  41. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-perfor-mance genomics data visualization and exploration. Brief Bioinform 14:178–192. CrossRefPubMedGoogle Scholar
  42. Watanabe K, Saito T, Hirota S, Takahashi B, Fujishita N (1991) Carotenoid pigments in orange, light orange, green and white flesh colored fruits of melon (Cucumis melo L.). J Jpn Soc Food Sci Technol 38(2):153–159. CrossRefGoogle Scholar
  43. Yang GH, Fan R, Yang XF, Hou JL, Yuan SC, Cao M, Wang XL, Li JS (2014) Construction of a highly dense genetic map using SNP and mapping of three qualitative traits in Cucumis melo. Acta Hortic Sin 41(5):898–906 (in Chinese) Google Scholar
  44. Yang HB, Sungwoo P, Younghoon P, Gungpyo L, Kang SC, Yongkwon K (2015) Linkage analysis of the three loci determining rind color and stripe pattern in watermelon. Hortic Sci Technol 33(4):559–565. CrossRefGoogle Scholar
  45. Zhang ZP, Zhang YN, Sun L, Qiu G, Sun YJ, Zhu ZC, Luan FS, Wang XZ (2017) Construction of a genetic map for Citrullus lanatus based on CAPS markers and mapping of three qualitative traits. Sci Hortic 233:532–538. CrossRefGoogle Scholar
  46. Zhao ZG, Yan HF, Zheng R, Saeed KM, Fu X, Tao Z, Zhang ZY (2018) Anthocyanins characterization and antioxidant activities of sugarcane (Saccharum officinarum L.) rind extracts. Ind Crops Prod 133:38–45. CrossRefGoogle Scholar
  47. Zheng WJ, Yan W, Wang LL, Ma Z, Zhao JM, Wang P, Zhang LX, Liu Zh, Lu XC (2016) Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. Theor Appl Genet 129(5):1035–1044. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region)Ministry of AgricultureHarbinChina
  2. 2.Horticulture and Landscape Architecture of Northeast Agricultural UniversityHarbinChina
  3. 3.Heilongjiang Agricultural Economy Vocational CollegeMudanjiangChina

Personalised recommendations