, 215:25 | Cite as

Mass spectrometry-based metabolomic discrimination of Cercospora leaf spot resistant and susceptible sugar beet germplasms

  • Bahram Heidari
  • Maria Begoña Miras Moreno
  • Luigi Lucini
  • Melvin Bolton
  • Mitchell J. McGrath
  • Chiara Broccanello
  • Ilaria Alberti
  • Luca Sella
  • Giuseppe Concheri
  • Andrea Squartini
  • Massimo Cagnin
  • Mahdi Hassani
  • Alessandro Romano
  • Piergiorgio StevanatoEmail author


A better understanding of the plant metabolites produced in response to disease infection may be useful for the development of disease-resistant crop varieties. In the present study, ultra high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (QTOF-MS) was used to identify differentially accumulated metabolites in a subset of sugar beet genotypes harbouring different levels of resistance to Cercospora leaf spot (CLS), a disease caused by the fungal pathogen Cercospora beticola. Leaves of three susceptible (S1, S2 and S3) and two resistant (R1 and R2) genotypes were subjected to QTOF-MS for metabolite profiling. A wide range of metabolites was identified in sugar beet genotypes using metabolomics. Results of Partial Least Squares-Discriminant Analysis indicated that 15 metabolites could better discriminate resistant and susceptible genotypes. A Volcano Plot analysis indicated that the flavonoid quercetin 3-O-(6″-O-p-coumaroyl)-glucoside and gibberellin A51 with the highest absolute fold change (FC = 16), were repressed in resistant samples. Among the 3 metabolites (isovitexin-7-O-xyloside, 3-demethylubiquinol-8 and apigenin 7-O-d-glucoside) showing significant up accumulation in CLS-resistant samples, the flavonoid isovitexin-7-O-xyloside (FC = 4825.634) is associated with resistance to infection with fungal species causing the disease in other crops. Although further studies are still necessary to better elucidate the mechanism of resistance, our results suggest that breeders might exclude susceptible plants based on discriminating metabolites without the need for field inoculation tests. The results also create a solid basis for metabolite-associated reverse genetics and single nucleotide polymorphism discovery based on significantly differentially accumulated metabolites, whose identification is a next strategic priority. The results obtained also underline the role of metabolic signature in CLS resistance mechanisms and provide a platform for the metabolic engineering of sugar beet with higher resistance against C. beticola pathogen.


Cercospora leaf spot Disease resistance Liquid chromatography Metabolomics Sugar beet 


Compliance with ethical standards

Conflict of interest

The authors declare that no conflict of interest exists.


  1. Akiyama T, Shibuya M, Liu HM, Ebizuka Y (1999) p-Coumaroyltriacetic acid synthase, a new homologue of chalcone synthase, from Hydrangea macrophylla var. thunbergii. Eur J Biochem 263:834–839PubMedCrossRefGoogle Scholar
  2. Beleggia R, Platani C, Nigro F, De Vita P, Cattivelli L, Papa R (2013) Effect of genotype, environment and genotype-by-environment interaction on metabolite proofing in durum wheat grain. J Cereal Sci 57:183–192CrossRefGoogle Scholar
  3. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  4. Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemom 28:213–225CrossRefGoogle Scholar
  5. Chamarthi SK, Kumar K, Gunnaiah R, Kushalappa AC, Dion Y, Choo TM (2014) Identification of Fusarium head blight resistance related metabolites specific to doubled-haploid lines in barley. Eur J Plant Pathol 138:67–78CrossRefGoogle Scholar
  6. Cui X, Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4:210PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cuperlovic-Culf M, Rajagopalan N, Tulpan D, Loewen MC (2016) Metabolomics and cheminformatics analysis of antifungal function of plant metabolites. Metabolites 6:31PubMedCentralCrossRefGoogle Scholar
  8. Davidson RM, Hanson LE, Franc GD, Panella L (2006) Analysis of beta-tubulin gene mutations in Cercospora beticola varying in sensitivity to benzimidazole fungicides. J Phytopathol 154:321–328CrossRefGoogle Scholar
  9. De Bruyne L, Höfte M, De Vleesschauwer D (2014) Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant 7:943–959PubMedCrossRefGoogle Scholar
  10. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H et al (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549PubMedCrossRefGoogle Scholar
  11. Dutta A, Chan SH, Pauli NT, Raina R (2015) Hypersensitive response-like lesions 1 codes for AtPPT1 and regulates accumulation of ROS and defense against bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Antioxid Redox Signal 22:785–796PubMedPubMedCentralCrossRefGoogle Scholar
  12. Frank T, Scholz B, Peter S, Engel KH (2011) Metabolite profiling of barley: influence of the malting process. Food Chem 124:948–957CrossRefGoogle Scholar
  13. Gauthier L, Atanasova-Penichon V, Chéreau S, Richard-Forget F (2015) Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. Int J Mol Sci 16:24839–24872PubMedPubMedCentralCrossRefGoogle Scholar
  14. Govindappa M, Rai VR, Lokesh S (2014) Induction of resistance against Cercospora leaf spot in safflower by seed treatment with plant growth-promoting rhizobacteria. Arch Phytopathol Plant Protect 47:2479–2492CrossRefGoogle Scholar
  15. Griebel T, Zeier J (2010) A role for β-sitosterol to stigmasterol conversion in plant–pathogen interactions. Plant J 63:254–268PubMedCrossRefGoogle Scholar
  16. Haenlein M, Kaplan AM (2004) A beginner’s guide to partial least squares analysis. Underst Stat 3:283–297CrossRefGoogle Scholar
  17. Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol 92:116–122PubMedPubMedCentralCrossRefGoogle Scholar
  18. He W, Brumos J, Li H, Ji Y, Ke M, Gong X et al (2011) A small-molecule screen identifies l-Kynurenine as a competitive Inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960PubMedPubMedCentralCrossRefGoogle Scholar
  19. Herrero S, Amnuaykanjanasin A, Daub ME (2007) Identification of genes differentially expressed in the phytopathogenic fungus Cercospora nicotianae between cercosporin toxin-resistant and-susceptible strains. FEMS Microbiol Lett 275:326–337PubMedCrossRefGoogle Scholar
  20. Heuberger AL (2014) Application of non targeted metabolite profiling to discover novel markers of quality traits in an advanced population of malting barley. Plant Biotechnol J 12:147–160PubMedCrossRefGoogle Scholar
  21. Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254PubMedCrossRefGoogle Scholar
  22. Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci 18:522–531PubMedCrossRefGoogle Scholar
  23. Lange BM, Severin K, Bechthold A, Heide L (1998) Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase for shikonin biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Planta 204:234–241PubMedCrossRefGoogle Scholar
  24. Larson RL, Wintermantel WM, Hill AL, Fortis L, Nunez A (2008) Proteome changes in sugar beet in response to Beet necrotic yellow vein virus. Physiol Mol Plant Pathol 72:62–72CrossRefGoogle Scholar
  25. Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 2006:23–67Google Scholar
  26. Li W (2012) Volcano plots in analyzing differential expressions with mRNA microarrays. J Bioinform Comput Biol 10:1231003PubMedCrossRefGoogle Scholar
  27. Li H, Smigocki AC (2016) Transcriptome analysis of sugar beet root maggot (Tetanops myopaeformis) genes modulated by the Beta vulgaris host. Insect Sci 2:222–234Google Scholar
  28. Li W, Freudenberg J, Suh YJ, Yang Y (2014) Using volcano plots and regularized-chi statistics in genetic association studies. Comput Biol Chem 48:77–83PubMedCrossRefGoogle Scholar
  29. Liu M, Lu S (2016) Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Front Plant Sci 7:1898PubMedPubMedCentralGoogle Scholar
  30. Lucini L, Borgognone D, Rouphael Y, Cardarelli M, Bernardi J, Colla G (2016) Mild potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves. Front Plant Sci 7:948. PubMedPubMedCentralCrossRefGoogle Scholar
  31. Martin JA, Solla A, Woodward S, Gil L (2007) Detection of differential changes in lignin composition of elm xylem tissues inoculated with Ophiostoma novo-ulmi using fourier transform-infrared spectroscopy. For Pathol 37:187–191CrossRefGoogle Scholar
  32. McGuire JC, Thomas MC, Stroshane RM, Hamilton BK, White RJ (1980) Biosynthesis of daunorubicin glycosides: role of epsilon-rhodomycinone. Antimicrob Agents Chemother 18:454–464PubMedPubMedCentralCrossRefGoogle Scholar
  33. Mensak MM, Fitzgerald VK, Ryan EP, Lewis MR, Thompson HJ, Brick MA (2010) Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using omics technologies. BMC Genomics 11:1–11CrossRefGoogle Scholar
  34. Miedes E, Vanholme R, Boerjan W, Molina A (2014) The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci 5:358PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265PubMedPubMedCentralCrossRefGoogle Scholar
  36. Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376PubMedCrossRefGoogle Scholar
  37. Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655PubMedCrossRefGoogle Scholar
  38. Peterbauer T, Karner U, Mucha J, Mach L, Jones DA, Hedley CL et al (2003) Enzymatic control of the accumulation of verbascose in pea seeds. Plant Cell Environ 26:1385–1391CrossRefGoogle Scholar
  39. Petrovic M, Barcelo D (2006) Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. J Mass Spectrom 10:1259–1267CrossRefGoogle Scholar
  40. Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2006) The regulation of flavonoid biosynthesis, In: Grotewold E (ed) The science of flavonoids, Springer, New York, pp 97–122CrossRefGoogle Scholar
  41. Razavi SM, Zahri S, Zarrini G, Nazemiyeh H, Mohammad S (2009) Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Russ J Bioorg Chem 53:376–378CrossRefGoogle Scholar
  42. Rouphael Y, Colla G, Bernardo L, Kane D, Trevisan M, Lucini L (2016) Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. Front Plant Sci 7:842PubMedPubMedCentralGoogle Scholar
  43. Ruppel EG, Gaskill JO (1971) Techniques for evaluating sugar beet for resistance to Cercospora beticola in the field. J ASSBT 16:384–389Google Scholar
  44. Sasaki K, Abe H, Yoshizaki F (2002) In vitro antifungal activity of naphthoquinone derivatives. Biol Pharm Bull 25:669–670PubMedCrossRefGoogle Scholar
  45. Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66(8):869–877PubMedCrossRefGoogle Scholar
  46. Sismotto M, Paschoal JAR, Teles JA, de Rezende RAE, Reyes FGR (2014) A simple liquid chromatography coupled to quadrupole time of flight mass spectrometry method for macrolide determination in tilapia fillets. J Food Compos Anal 32:153–162CrossRefGoogle Scholar
  47. Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J et al (2010) Discovering plant metabolite biomarkers for phenotyping prediction using an untargeted approach. Plant Biotechnol 8:900–911CrossRefGoogle Scholar
  48. Steyns J, Brederode JV (1986) The Expression of the isovitexin 7-O-Xylosylating Gene gX in Silene pratensis and S. dioica is restricted to the petals. Z Naturforsch 41:537–541CrossRefGoogle Scholar
  49. Stump WL, Franc GD, Harveson RM, Wilson RG (2004) Strobilurin fungicide timing for rhizoctonia root and crown rot suppression in sugarbeet. J Sugar Beet Res 41:17–38CrossRefGoogle Scholar
  50. Tikunov Y, Lommen A, De Vos CR, Verhoeven HA, Bino RJ, Hall RD et al (2005) A novel approach for nontargeted data analysis for metabolomics large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wang K, Senthil-Kumar M, Ryu CM, Kang L, Mysore KS (2012) Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol 158:1789–1802PubMedPubMedCentralCrossRefGoogle Scholar
  52. Wang J, Tao SH, Song J, Ji J (2014) Hashing for similarity search: a survey. arXiv preprint arXiv:1408.2927
  53. Webb KM, Broccardo CJ, Prenni JE, Wintermantel WM (2014) Proteomic profiling of sugar beet (Beta vulgaris) leaves during rhizomania compatible interactions. Proteomes 2:208–223PubMedPubMedCentralCrossRefGoogle Scholar
  54. Webb KM, Wintermantel WM, Kaur N, Prenni JE, Broccardo CJ, Wolfe LM et al (2015) Differential abundance of proteins in response to Beet necrotic yellow vein virus during compatible and incompatible interactions in sugar beet containing Rz1 or Rz2. Physiol Mol Plant Pathol 91:96–105CrossRefGoogle Scholar
  55. Webb KM, Freeman C, Broeckling CD (2016) Metabolome profiling to understand the defense response of sugar beet (Beta vulgaris) to Rhizoctonia solani AG 2-2 IIIB. Physiol Mol Plant Pathol 94:108–117CrossRefGoogle Scholar
  56. Weltmeier F, Mäser A, Menze A, Hennig S, Schad M, Breuer F et al (2011) Transcript profiles in sugar beet genotypes uncover timing and strength of defense reactions to Cercospora beticola infection. Mol Plant Microbe Interact 24:758–772PubMedCrossRefGoogle Scholar
  57. Zhang YX, Nan JD, Yu B (2016) OMICS technologies and applications in sugar beet. Front Plant Sci 7:900PubMedPubMedCentralGoogle Scholar
  58. Zhao S, Guo Y, Sheng Q, Shyr Y (2014) Advanced heat map and clustering analysis using heatmap3. Bio Med Res Int 2014:1–6Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bahram Heidari
    • 1
  • Maria Begoña Miras Moreno
    • 2
  • Luigi Lucini
    • 2
  • Melvin Bolton
    • 3
  • Mitchell J. McGrath
    • 4
  • Chiara Broccanello
    • 5
  • Ilaria Alberti
    • 6
  • Luca Sella
    • 7
  • Giuseppe Concheri
    • 5
  • Andrea Squartini
    • 5
  • Massimo Cagnin
    • 5
  • Mahdi Hassani
    • 1
    • 8
  • Alessandro Romano
    • 9
  • Piergiorgio Stevanato
    • 5
    Email author
  1. 1.Department of Crop Production and Plant Breeding, School of AgricultureShiraz UniversityShirazIran
  2. 2.Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
  3. 3.USDA-Agricultural Research ServiceNorthern Crops Science LaboratoryFargoUSA
  4. 4.USDA-ARS Sugarbeet and Bean ResearchEast LansingUSA
  5. 5.Department of Agronomy, Animals, Natural Resources and Environment-DAFNAEUniversity of PadovaLegnaroItaly
  6. 6.CREA-CIRovigoItaly
  7. 7.Department of Land, Environment, Agriculture and Forestry-TESAFUniversity of PadovaLegnaroItaly
  8. 8.Sugar Beet Research Department, Hamedan Agricultural and Natural Resources Research and Education CenterAREEOHamedanIran
  9. 9.Centro Difesa e CertificazioneConsiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA)LonigoItaly

Personalised recommendations