Advertisement

Euphytica

, 215:16 | Cite as

Auxin application in interploidy crosses and genome stability: across-generation investigations on German chamomile (Matricaria recutita [L.] Rauschert) of various origins

  • B. FaehnrichEmail author
  • L.-G. Otto
  • C. Franz
  • E. Mešić
  • A.-C. Cosendai
  • C. Dobeš
Article
  • 57 Downloads

Abstract

Interploid crosses display a common approach in plant breeding to vary ploidy level in crops. This research included three trials to determine ploidy purity and genomic stability of diploid, triploid and auto-tetraploid varieties of German chamomile during life-time and across generations after interploid crosses. Impacts of auxin application were evaluated for seed set, germination rate and progeny ploidy. Ploidy was assessed by flow cytometry and chromosome counting. Ploidy purity in cultivars ranged from 64% (‘Lutea’, 4x) to 100% (‘Bona’, 2x), the share of ploidy-deviants was in 4x-cultivars higher (8%) than in 2x (1%). Auxin application resulted in higher seed set in tetraploids only, while the number of progeny did neither depend on cross direction nor on auxin application. Life time genome stability applied for all ploidy levels. Ploidy level of progeny from 2x × 4x crosses was mostly linked to the maternal level. 3x plants bore progeny with diverse ploidy forms, but not with triploidy. However, cultivars should regularly be monitored for conformance to declared ploidy also in awareness of possible unintended contamination.

Keywords

Matricaria Chamomile Ploidy Auxin Triploid Interploidy 

Notes

Acknowledgements

This work was partly supported based upon a resolution of the Federal Parliament of Germany (Deutscher Bundestag) by the German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) via the Fachagentur Nachwachsende Rohstoffe e.V. (FNR) as Project executing organisation for the funding programme “Renewable Resources” (BMELV, Support Code 22038911/11NR389).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Becker H (1993) Pflanzenzüchtung. Ulmer, StuttgartGoogle Scholar
  2. Bucci A, Cassaui E, Laudoni M, Cantaluppi E, Pilu R (2013) Analysis of chromosome number and speculations on the origin of Arundo donax L. (Giant Reed). Cytol Genet 47:237–241CrossRefGoogle Scholar
  3. Carle R, Schreiber A, Reinhard E (1992) Effect of auxin herbicides on growth, yield and composition of active compounds of Chamomilla recutita (L.) Rauschert. Angew Bot 66:89–92Google Scholar
  4. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244CrossRefGoogle Scholar
  5. Doroshkekevich I (2010) Medicinal herbs cultivation. Tendencies and perspectives. In: Proceedings of the National Academy of Sciences of Belarus. Agarian Series. pp 71–76Google Scholar
  6. Drews G, Koltunow A (2011) The female gametophyte. In: The American Society of Plant Biologists (2011). The Arabidopsis Book.  https://doi.org/10.1199/tab.0155
  7. Ezura H, Kikuta I, Oosawa K (1997) Long-term ploidy stability of shoot primordium cultures and produced plants of melon. Plant Cell Tissue Organ Cult 48:31–35CrossRefGoogle Scholar
  8. Faehnrich B, Dobes C, Franz C (2013) Ploidy level and reproductive trait analysis in three Matricaria recutita cultivars. Cytologia 78:173–179CrossRefGoogle Scholar
  9. Feng H, Wang M, Cong R, Dai S (2017) Colchicine- and trifluralin-mediated polyploidization of Rosa multiflora Thunb. Var. inermis and Rosa roxburghii f. normalis. J Horticult Sci Biotechnol 92:279–287CrossRefGoogle Scholar
  10. Figueiredo D, Köhler C (2018) Auxin: a molecular trigger of seed development. Genes Dev 32:479–490.  https://doi.org/10.1101/gad.312546.118 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Figueiredo D, Batista R, Roszak P, Hennig L, Köhler C (2016) Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife 5:e20542.  https://doi.org/10.7554/elife.20542 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Galbraith D, Harkins K, Maddox J, Ayres N, Sharma D, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051CrossRefGoogle Scholar
  13. Garcia S, Kovarik A, Leitch A, Garnatje T (2017) Cytogentic features of rRNA genes across land plants: analysis of plant rDNA database. Plant J 89:1020–1030CrossRefGoogle Scholar
  14. Gottschalk W (1976) Die Bedeutung der Polyploidie für die Evolution der Pflanzen. Gustav Fischer Verlag, StuttgartGoogle Scholar
  15. Greilhuber J (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot (Lond) 95:255–260CrossRefGoogle Scholar
  16. Gupta H, Gupta R, Kumar R, Singhal V (2017) A profile of chromosome counts, male meiosis and pollen fertility in 45 species of Asteraceae from Parvati Valley in Kullu district, Himachal Pradesh. Caryology 70:128–140CrossRefGoogle Scholar
  17. Hands P, Rabiger D, Koltunow A (2016) Mechanisms of endosperm initiation. Plant Reprod 29:215–225CrossRefGoogle Scholar
  18. Hata S, Yomo T, Fujita S (2001) Breeding of triploid plants of stevia (Stevia rebaudiana Bertoni) with high rebaudioside A content. Jpn J Tropic Agric 45:281–289Google Scholar
  19. Heine H, Eger H, Franz C, Blüthner WD, Hoppe B, (2009) Kap. 2.3 Sortenwesen. In: Saluplanta (Hrsg.), Handbuch des Arznei- und Gewürzpflanzenbaus, Band 1, Grundlagen des Arznei- und Gewürzpflanzenbaus I. Verein für Arznei und Gewürzpflanzen SALUPLANTA e.V., Bernburg, pp 609–640Google Scholar
  20. Hojsgaard D, Greilhuber J, Pellino M, Paun O, Sharbel TF, Hörandl E (2014) Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phyto 204:1000–1012.  https://doi.org/10.1111/nph.12954 CrossRefGoogle Scholar
  21. Iorizzo M, Aversano R, Bradeen J, Frusciante L, Carputo D (2012) Fertilization fitness and offspring ploidy in 3x × 2x matings in potato. Plant Biosyst 146:317–321CrossRefGoogle Scholar
  22. Iqbal M, Ahmad Z (2006) Production technology and post-harvest processing of medicinal herbs and spices of socio-economic importance. Hamdard Medicus 49(1):155–162Google Scholar
  23. Ivanovic S, Pajic M, Markovic T (2014) Economic effectiveness of mechanized harvesting of chamomile. Econ Agricult 61:319–330Google Scholar
  24. Javadian N, Karimadeh G, Sharifi M, Moieni A, Behmanesh M (2017) In vitro polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae). Planta 245:1165–1178CrossRefGoogle Scholar
  25. Jennings D, Craig D, Topham P (1967) The role of the male parent in the reproduction of Rubus. Heredity 22:43–55CrossRefGoogle Scholar
  26. Johnston S, den Nijs T, Peloquin J, Hanneman R Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9CrossRefGoogle Scholar
  27. Kinoshita T (2007) Reproductive barrier and genomic imprinting in the endosperm of flowering plants. Gene Genet Syst 82:177–186CrossRefGoogle Scholar
  28. Kutlunina N, Permyakova A, Belyaev A (2017) Genetic diversity and reproductive traits in triploid and tetraploid populations of Gladiolus tenuis (Iridaceae). Plant Syst Evol 303:1–10CrossRefGoogle Scholar
  29. Makrogianni D, Karapanos I, Passam H (2018) Seasonal fluctuations in pollen production and viability in eggplant and the quality of seed-containing and seedless (auxin-set) fruits. J Plant Growth Regul 1–10 (article in press)Google Scholar
  30. Nopporncharoenkul N, Chanmai J, Jenjittiku T, Anamthawa-Jónsson K, Soontornchainaksaeng P (2017) Chromosome number variation and polyploidy in 19 Kaempferia (Zingiberaceae) taxa from Thailand and one species from Laos. J Syst Evol 55:466–476CrossRefGoogle Scholar
  31. Oravec V Sr, Oravec V Jr, Gaia-Orevic V (2007) Breeding of Bisabolol diploid and tetraploid varieties of chamomile in Slovakia. ISHS Acta Horticulturae 749. In: International symposium on chamomile research, development and production, 2007, Presov, Slovak Republic.  https://doi.org/10.17660/actahortic.2007.749.11
  32. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Ann Rev Genet 34:401–437CrossRefGoogle Scholar
  33. Otto LG, Junghanns W, Plescher A, Sonnenschein M, Sharbel T (2015) Towards breeding of triploid chamomile (Matricaria recutita L.)—ploidy variation within German chamomile of various origins. Plant Breeding 134:485–493.  https://doi.org/10.1111/pbr.12285 CrossRefGoogle Scholar
  34. Paiva E, Bustamante F, Barboso S, Pereira A, Davide L (2012) Meiotic behaviour in early and recent duplicated hexaploidy hybrids of napier grass (Pennisetum purpureum) and pearl millet (Pennisetum glaucum). Caryology 65:114–120CrossRefGoogle Scholar
  35. Pavlakova Z, Paatova L, Manzbergova Z (2017) Synthetic polyploids in Vicia cracca: methodology, effects on plant performance and aneuploidy. Plant Syst Evol 303:827–839CrossRefGoogle Scholar
  36. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  37. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Ann Rev Ecol Syst 33:589–639CrossRefGoogle Scholar
  38. Regalado J, Carmona Martin E, Castro P, Moreno R, Gil J, Encina C (2015) Study of the somaclonal variation produced by different methods of polyploidization in Asparagus officinalis L. Plant Cell Tissue Organ Cult 122:31–44CrossRefGoogle Scholar
  39. Rival A, Ilbert P, Labeyrie A, Torres E, Doulbeau S, Personne A, Dussert S, Beule T, Durand-Gasselin T, Tregear J, Jaligot E (2013) Variations in genomic DNA methylation during long-term proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep 32:359–368CrossRefGoogle Scholar
  40. Sattler M, Carvalho C, Clarindo W (2016) Polyploidy and its key role in plant breeding. Planta 243:281–296CrossRefGoogle Scholar
  41. Schilcher H (1987) Die Kamille—Handbuch für Ärzte. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Apotheker und andere WissenschaftlerGoogle Scholar
  42. Schinkel C, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E (2017) Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Syst Evol 303:1093–1108CrossRefGoogle Scholar
  43. Scott R, Spielman M, Bailey J, Dickinson H (1988) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341Google Scholar
  44. Sebastiani M, Ficcadenti N (2016) In vitro plant regeneration from cotyledonary explants of Cucumis melo L. var. cantalupensis and genetic stability evaluation using RAPD analysis. Plant Cell Tissue Organ Cult 124:69–79CrossRefGoogle Scholar
  45. Singh A, Bhatt S, Pandey Y, Kumar N, Adarsch A (2016) Efficacy of auxins and gibberellic acid on floral attributes and on essential oil yield on German Chamomile (Matricaria chamomilla L.). Med Plants 8:52–55Google Scholar
  46. Singhal V, Kumari V, Kumar P (2014) Cytomorphological diversity in some selected members of Poaceae from Parvati Valley in Kullu district of Himachal Pradesh, India. Plant Syst Evol 300:1385–1408CrossRefGoogle Scholar
  47. Soltis D, Soltis P, Schemske D, Hancock J, Thompson J, Husband B, Judd W (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30Google Scholar
  48. Storchova Z (2014) Ploidy changes and genome stability in yeast. Yeast 31:421–430CrossRefGoogle Scholar
  49. Taviani P, Rosellini D, Veronesi F (2003) Chemical and molecular diversity among natural populations of Chamomilla recutita (L.) Rauschert from Central Italy. Agricolt Mediterr (Italy) 133:20–27Google Scholar
  50. Tezenas du Montcel H, Bakry F, Horry J (1994) Breeding for the improvement of banana and plantain. Banana and plantain breeding: priorities and strategies. In: Proceedings of the first meeting of the Musa Breeders’ Network, held in La Lima, Honduras, 2–3 May 1994Google Scholar
  51. Uwatoko N, Tamura K, Yamashita H, Gau M (2016) Naturally occurring triploid hybrids between Miscanthus sacchariflorus and M. sinensis in Southern Japan, show phenotypic variation in agronomic and morphological traits. Euphytica 212:355–370CrossRefGoogle Scholar
  52. Verma S, Das A, Gantait S, Gurel S, Gurel E (2018). Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana. Biotech 8:Art. no. 99Google Scholar
  53. Vieira R, Bizzo H, Deschamps C (2010) Genetic resources of aromatic plants from Brazil. Isr J Plant Sci 58:263–271CrossRefGoogle Scholar
  54. Warchol M, Skrzypek E, Nowakowska A, Marcinska I, Czyczylo-Mysza I, Dziurka K, Juzon K, Cyganek K (2016) The effect of auxin and genotype on the production of Avena sativa L. double haploid lines. Plant Growth Regul 78:155–165CrossRefGoogle Scholar
  55. Xie W, Leus L, Wang J (2017) Fertility barriers in interspecific crosses within Viburnum. Euphytica 213:34.  https://doi.org/10.1007/s10681-16-1829-5 CrossRefGoogle Scholar
  56. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64.  https://doi.org/10.1146/annurev-arplant-042809-112308 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.WG Functional Plant Compounds, University of Veterinary MedicineViennaAustria
  2. 2.Faculty of AgricultureUniversity of Applied Sciences Weihenstephan-TriesdorfWeidenbachGermany
  3. 3.Group Quantitative GeneticsLeibniz-Institute for Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  4. 4.Department of PharmacognosyUniversity of ViennaViennaAustria
  5. 5.Department of Plant Systematics and EvolutionUniversity of ViennaViennaAustria
  6. 6.Department of Forest GeneticsAustrian Research Centre for ForestsViennaAustria

Personalised recommendations