, 215:8 | Cite as

The identification of multiple SNP markers for scald resistance in spring barley through restriction-site associated sequencing

  • Jennifer Zantinge
  • Shiming Xue
  • Michael Holtz
  • Kequan Xi
  • Patricia Juskiw


Leaf scald caused by Rhynchosporium commune (formerly R. secalis) is an important fungal disease in barley (Hordeum vulgare) in western Canada. Pyramiding multiple scald resistance qualitative trait loci (QTL) is considered an effective strategy for breeding durable scald resistance into barley. The objective of this study was to map QTLs with restriction site-associated (RAD) markers and identify single nucleotide polymorphism (SNP) markers for scald resistance. Two recombinant inbred line (RIL) populations (crosses Harrington/Seebe and Seebe/Shyri) with good resistance to local scald isolates were genotyped by RAD sequencing (RADseq). A total of 4203 SNPs were obtained from the RADseq analysis of 162 F7 RILs. Inclusive composite interval mapping identified multiple major QTLs for scald resistance on chromosomes 3H, 4H, and 5H in Shyri, and 2H and 6H in Seebe. SNP markers from Shyri were located in the same region as the previously reported 3H QTL Rrs1. Several SNP markers from Seebe clustered on chromosome 6H near a major scald resistance QTL. The 6H QTL appeared effective for both adult plant resistance and seedling resistance, and explained up to 70.9% of the phenotypic variation among the sequenced lines. A tightly linked SNP for the major 6H QTL was converted into an allele specific PCR marker. The QTLs and their genetic markers found in this study will be useful in barley breeding for the selection of resistance to barley leaf scald.


Barley Scald-resistance Restriction-site associated DNA sequencing (RADseq) Single-nucleotide polymorphism (SNP) Marker assisted selection (MAS) Qualitative trait loci (QTL) 



We thank Erinn Smith, Zhanna Hartman, Sasha Waterman, Shan Lohr, Linda Vandermaar and the field staff at the Field Crop Development Centre for their excellent technical and field assistance. This study was funded by the Alberta Barley Commission and Alberta Agriculture and Forestry.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2018_2317_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 kb)
10681_2018_2317_MOESM2_ESM.docx (29 kb)
Supplementary material 2 (DOCX 28 kb)


  1. Abbott DC, Lagudah ES, Brown AHD (1995) Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. J Hered 86:152–153CrossRefGoogle Scholar
  2. Bjørnstad Å, Patil V, Tekauz A, Marøy AG, Skinnes H, Jensen A, Magnus H, MacKey J (2002) Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near isogenic lines: I. Markers and differential isolates. Phytopathology 92:710–720. CrossRefPubMedGoogle Scholar
  3. Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol 1374:115–140. CrossRefPubMedGoogle Scholar
  4. Couture L (1980) Assessment of severity of foliage diseases of cereals in cooperative evaluation tests. Can Plant Dis Surv 60:8–10Google Scholar
  5. Cséleny L, Ordon F, Friedt W (1998) Inheritance of resistance to Rhynchosporium secalis in spring barley (Hordeum vulgare L.). Plant Breed 117:23–26CrossRefGoogle Scholar
  6. Fechter I, Rath F, Voetz M (2010) A single PCR marker predicting the activity levels of various enzymes responsible for malting quality. J Am Brew Chem 68(1):41–47Google Scholar
  7. Garvin DF, Brown AHD, Raman H, Read BJ (2000) Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119(3):193–196CrossRefGoogle Scholar
  8. Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ (2003) Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica 134(2):149–159CrossRefGoogle Scholar
  9. Genger RK, Nesbitt K, Brown AHD, Abott DC, Burdon JJ (2005) A novel barley scald resistance gene: genetic mapping of the Rrs15 scald resistance gene derived from wild barley, Hordeum vulgare ssp. spontaneum. Plant Breed 124:137–141CrossRefGoogle Scholar
  10. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Graner A, Tekauz A (1996) RFLP mapping in barley of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor Appl Genet 93(3):421–425CrossRefGoogle Scholar
  12. Grønnerød S, Marøy AG, MacKey J, Tekauz A, Penner GA, Bjørnstad A (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica 126(2):235–250CrossRefGoogle Scholar
  13. Hanemann A, Günther F, Schweizer RC, Wicher T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119(8):1507–1522. CrossRefPubMedGoogle Scholar
  14. Harvey B, Rossnagel B (1984) Harrington barley. Can J Plant Sci 64:193–194CrossRefGoogle Scholar
  15. Helm J, Cortez M, Salmon D, Jedel P, Stewart W (1996) Registration of ‘Seebe’ barley. Crop Sci 36:808–809. CrossRefGoogle Scholar
  16. Hofmann K (2015) Phenotypic assessment and genetic mapping of genes conferring resistance to leaf scald (Rhynchosporium commune) in barley (Hordeum vulgare). Dissertation, University of Giessan, Germany.
  17. Hofmann K, Silvar C, Casas AM, Herz M, Büttner B, Gracia MP et al (2013) Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor Appl Genet 126(12):3091–3102. CrossRefPubMedGoogle Scholar
  18. Hwang JU, Song W-Y, Hong D, Ko D, Yamaoka Y et al (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355. CrossRefPubMedGoogle Scholar
  19. Jorgensen LHJ, Smedegaard-Petersen V (1995) Pathogenic variation among isolates of Rhynchosporium secalis in Denmark and sources of resistance in barley. Plant Dis 79:297–301CrossRefGoogle Scholar
  20. Krattinger SG, Keller B (2016) Molecular genetics and evolution of disease resistance in cereals. New Phytol 212:320–332. CrossRefPubMedGoogle Scholar
  21. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, HuertaEspino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefGoogle Scholar
  22. Kuznetsova E, Nocek B, Brown G, Makarova KS, Flick R et al (2015) Functional diversity of haloacid dehalogenase superfamily phosphatases from Saccharomyces cerevisiae: biochemical, structural and evolutionary insights. J Biol Chem 290:18678–18698. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Looseley ME, Newton AC, Atkins SD, Fitt BDL, Fraije B, Thomas WTB, Keith R, Lynott J, Harrap D (2012) Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley. Euphytica 184:47–56CrossRefGoogle Scholar
  25. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235.
  26. Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer G, Röder MS (2016) Are pectin esterase inhibitor genes involved in mediating resistance to Rhynchosporium commune in barley? PLoS ONE 11(3):e0150485. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mascher M, Wu S, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433. CrossRefPubMedGoogle Scholar
  29. Patil V, Bjørnstad A, MacKey J (2003) Molecular mapping of a new gene Rrs4 CI11549 for resistance to barley scald (Rhynchosporium secalis). Mol Breed 12:169–183CrossRefGoogle Scholar
  30. Pickering R, Ruge-Wehling B, Johnston PA, Schweizer G, Ackermann P, Wehling P (2006) The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed 125(6):576–579CrossRefGoogle Scholar
  31. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352CrossRefGoogle Scholar
  32. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467CrossRefGoogle Scholar
  33. Schweizer G, Baumer M, Daniel G, Rugel H, Röder M (1995) RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90(7–8):920–924CrossRefGoogle Scholar
  34. Singh A, Scoles G, Pickering R, Possnagel B (2003) Allelic studies of new sources of scald (Rhynchosporium secalis Davis) resistance in barley. Can J Plant Sci 83:709–713. CrossRefGoogle Scholar
  35. Urbach JM, Ausubel FM (2017) The NBS–LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci USA 114(5):1063–1068. CrossRefPubMedGoogle Scholar
  36. Vivar HE, McNab A (ed) (2001) Breeding barley in the new millenium: proceedings of an international symposium. Mexico, CIMMYT.13-14, March 2000.
  37. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. CrossRefPubMedGoogle Scholar
  38. Wagner C, Schweizer G, Krämer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118(1):113–122CrossRefGoogle Scholar
  39. Wang S, Basten CJ, Zeng ZB (2011) Windows QTL cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh. Accessed 2 Apr 2014
  40. Wang J, Li H, Zhang L, Meng L (2014a) QTL IciMapping Software. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) and Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT) in Mexico. Accessed 11 Sept 2015
  41. Wang Y, Gupta S, Wallwork H, Zhang XQ, Zhou G, Broughton S, Loughman R, Lance R, Xu D, Shu X, Li C (2014b) Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley. Mol Breed 34(4):2081–2089. CrossRefGoogle Scholar
  42. Xi K, Turkington TK, Helm JH, Briggs KG, Tewari JP, Ferguson T, Kharbanda PD (2003a) Distribution of pathotypes of Rhynchosporium secalis and cultivar reaction on barley in Alberta. Plant Dis 87:391–396. CrossRefGoogle Scholar
  43. Xi K, Turkington T, Meadus J, Helm J, Tewari J (2003b) Dynamics of Rhynchosporium secalis pathotypes in relation to barley cultivar resistance. Mycol Res 107(12):1485–1492CrossRefGoogle Scholar
  44. Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57:1–14Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jennifer Zantinge
    • 1
  • Shiming Xue
    • 1
  • Michael Holtz
    • 1
  • Kequan Xi
    • 1
  • Patricia Juskiw
    • 1
  1. 1.Field Crop Development Centre, Alberta Agriculture and ForestryLacombeCanada

Personalised recommendations