Advertisement

Euphytica

, 214:219 | Cite as

Genetics of Fe, Zn, β-carotene, GPC and yield traits in bread wheat (Triticum aestivum L.) using multi-locus and multi-traits GWAS

  • Jitendra Kumar
  • Gautam Saripalli
  • Vijay Gahlaut
  • Neha Goel
  • Prabina Kumar Meher
  • Kaushlesh Kumar Mishra
  • Prafulla Chandra Mishra
  • Deepmala Sehgal
  • Prashant Vikram
  • Carolina Sansaloni
  • Sukhwinder SinghEmail author
  • Pradeep Kumar Sharma
  • Pushpendra Kumar GuptaEmail author
Article

Abstract

The present study was conducted to study the genetic architecture of grain micronutrients (Zn, Fe and β-carotene contents), grain protein content and four yield traits in a spring wheat reference set comprising 246 genotypes. Phenotypic data on these traits recorded at two locations and the genotyping data for 17,937 SNP markers (obtained through outsourcing) were used for genome wide association study, which gave following results after Bonferroni correction using four methods: (1) single locus single trait analysis gave 136 marker-trait associations; (2) multi-locus mixed model gave 587 MTAs; (3) multi-trait mixed model gave 28 MTAs and (4) matrix-variate linear mixed model gave 33 MTAs. As many as 73 epistatic interactions were also detected. Keeping all the results in mind, nine most important MTAs were selected for biofortification. These markers were associated with three traits (GPC, GFeC and GYPP). These MTAs can be used in wheat improvement programs either using marker-assisted recurrent selection or pseudo-backcrossing method.

Keywords

Bread wheat (Triticum aestivum L.) GWAS SLST MLMM MTMM mvLMM 

Notes

Acknowledgements

JK received financial support in the form of a Senior Research Fellowship (SRF) from Indian Council of Medical Research (ICMR). Head, Genetics and Plant Breeding, CCS University, Meerut provided the facilities and Prof. V.K. Mishra, Banaras Hindu University Varanasi, India provided facility for zinc and iron estimations. CIMMYT gene bank is sincerely acknowledged for providing seed material and genotypic data for the present research.

Supplementary material

10681_2018_2284_MOESM1_ESM.pdf (663 kb)
Supplementary material 1 (PDF 664 kb)
10681_2018_2284_MOESM2_ESM.pdf (468 kb)
Supplementary material 2 (PDF 468 kb)
10681_2018_2284_MOESM3_ESM.pdf (303 kb)
Supplementary material 3 (PDF 303 kb)
10681_2018_2284_MOESM4_ESM.pdf (663 kb)
Supplementary material 4 (PDF 663 kb)
10681_2018_2284_MOESM5_ESM.pdf (1 mb)
Supplementary material 5 (PDF 1052 kb)
10681_2018_2284_MOESM6_ESM.pdf (487 kb)
Supplementary material 6 (PDF 487 kb)
10681_2018_2284_MOESM7_ESM.pdf (494 kb)
Supplementary material 7 (PDF 494 kb)
10681_2018_2284_MOESM8_ESM.pdf (470 kb)
Supplementary material 8 (PDF 471 kb)
10681_2018_2284_MOESM9_ESM.pdf (671 kb)
Supplementary material 9 (PDF 671 kb)
10681_2018_2284_MOESM10_ESM.pdf (414 kb)
Supplementary material 10 (PDF 414 kb)
10681_2018_2284_MOESM11_ESM.pdf (92 kb)
Supplementary material 11 (PDF 93 kb)

References

  1. Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T et al (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743CrossRefGoogle Scholar
  2. Allard RW (1999) Principles of plant breeding. Wiley, New YorkGoogle Scholar
  3. Bolormaa S, Pryce JE, Reverter A et al (2014) A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet 10:e1004198.  https://doi.org/10.1371/journal.pgen.1004198 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449CrossRefGoogle Scholar
  5. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177.  https://doi.org/10.1534/genetics.105.044586 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chattha MU, Hassan MU, Khan I et al (2017) Biofortification of wheat cultivars to combat zinc deficiency. Front Plant Sci 8:281CrossRefGoogle Scholar
  7. Colasuonno P, Lozito ML, Marcotuli I et al (2017) The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics 18:122.  https://doi.org/10.1186/s12864-016-3395-6 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crispim AC, Kelly MJ, Guimarães SEF et al (2015) Multi-trait GWAS and new candidate genes annotation for growth curve parameters in brahman cattle. PLoS One 10:e0139906.  https://doi.org/10.1371/journal.pone.0139906 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Diapari A, Bett K, Deokar A, Warkentin TD, Tar’an BM (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468.  https://doi.org/10.1139/gen-2014-0108 CrossRefPubMedGoogle Scholar
  10. Diapari M, Sindhu A, Warkentin TD et al (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35:30.  https://doi.org/10.1007/s11032-015-0252-2 CrossRefGoogle Scholar
  11. Esuma W, Herselman L, Labuschagne MT et al (2016) Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica 212:97–110.  https://doi.org/10.1007/s10681-016-1772-5 CrossRefGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  13. Furlotte NA, Eskin E (2015) Efficient multiple trait association and estimation of genetic correlation using the matrix-variate linear mixed-model. Genetics 200:59–68.  https://doi.org/10.1534/genetics.114.171447 CrossRefPubMedPubMedCentralGoogle Scholar
  14. González JR, Armengol L, Solé X et al (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23:644–645.  https://doi.org/10.1093/bioinformatics/btm025 CrossRefPubMedGoogle Scholar
  15. Gorafi YSA, Ishii T, Kim JS et al (2016) Genetic variation and association mapping of grain iron and zinc contents in synthetic hexaploid wheat germplasm. Plant Genet Resour 1:9.  https://doi.org/10.1017/S1479262116000265 CrossRefGoogle Scholar
  16. Graham R, Senadhira D, Beebe S et al (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 60:57–80.  https://doi.org/10.1016/S0378-4290(98)00133-6 CrossRefGoogle Scholar
  17. Gupta PK, Harindra SB, Pawan LK et al (2007) QTL analysis for some quantitative traits in bread wheat. J Zhejiang Univ Sci B 8:807–814.  https://doi.org/10.1631/jzus.2007.B0807 CrossRefGoogle Scholar
  18. Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet.  https://doi.org/10.1016/b978-0-12-800271-1.00002-0 CrossRefPubMedGoogle Scholar
  19. Heid IM, Winkler TW (2017) A multitrait GWAS sheds light on insulin resistance. Nat Genet 49:7–8CrossRefGoogle Scholar
  20. Hentschel V, Kranl K, Hollmann J et al (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668.  https://doi.org/10.1021/jf025701p CrossRefPubMedGoogle Scholar
  21. Hidalgo A, Brandolini A, Pompei C, Piscozzi R (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci 44:182–193.  https://doi.org/10.1016/j.jcs.2006.06.002 CrossRefGoogle Scholar
  22. Jaiswal V, Gahlaut V, Meher PK et al (2016) Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat (T. aestivum L.). PLoS One 11:e0159343.  https://doi.org/10.1371/journal.pone.0159343 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371.  https://doi.org/10.1007/s00122-007-0570-9 CrossRefPubMedGoogle Scholar
  24. Joshi AK, Crossa J, Arun B et al (2010) Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crop Res 116:268–277.  https://doi.org/10.1016/j.fcr.2010.01.004 CrossRefGoogle Scholar
  25. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216PubMedPubMedCentralGoogle Scholar
  26. Korte A, Vilhjálmsson BJ, Segura V et al (2012) A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet 44:1066–1071.  https://doi.org/10.1038/ng.2376 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant methods 9:29CrossRefGoogle Scholar
  28. Langer SM, Longin CFH, Würschum T (2014) Flowering time control in European winter wheat. Front Plant Sci 5:537.  https://doi.org/10.3389/fpls.2014.00537 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Leenhardt F, Lyan B, Rock E et al (2006) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron 25:170–176.  https://doi.org/10.1016/j.eja.2006.04.010 CrossRefGoogle Scholar
  30. Leplat F, Pedas PR, Rasmussen SK, Husted S (2016) Identification of manganese efficiency candidate genes in winter barley (Hordeum vulgare) using genome wide association mapping. BMC Genomics 17:805.  https://doi.org/10.1186/s12864-016-3129-9 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li WH, Wei LIU, Li LIU, You MS, Liu GT, Li BY (2011) QTL mapping for wheat flour color with additive, epistatic, and QTL × environmental interaction effects. Agric Sci China 10:651–660.  https://doi.org/10.1016/s1671-2927(11)60047-3 CrossRefGoogle Scholar
  32. Li G, Xu X, Bai G, Carver BF, Hunger R, Bonman JM et al (2016) Genome-wide association mapping reveals novel qtl for seedling leaf rust resistance in a worldwide collection of winter wheat. Plant Genome 9:0Google Scholar
  33. Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. Elife 3:e02245.  https://doi.org/10.7554/eLife.02245 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Manickavelu A, Hattori T, Yamaoka S (2017) Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS One 12:e0169416CrossRefGoogle Scholar
  35. Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 x Clark. Theor Appl Genet 112:688–698.  https://doi.org/10.1007/s00122-005-0172-3 CrossRefPubMedGoogle Scholar
  36. Mogga M, Sibiya J, Shimelis H, Lamo J, Yao N (2018) Diversity analysis and genomewide association studies of grain shape and eating quality traits in rice (Oryza sativa L.) using DArT markers. PLoS One 13:e0198012CrossRefGoogle Scholar
  37. Mulki MA, Jighly A, Ye GY, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 31:299–311CrossRefGoogle Scholar
  38. Myers SS, Zanobetti A, Kloog I et al (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142.  https://doi.org/10.1038/nature13179 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Neeraja CN, Babu VR, Ram S, Hossain F et al (2017) Biofortification in cereals: progress and prospects. Curr Sci 113:6CrossRefGoogle Scholar
  40. Norton GJ, Douglas A, Lahner B et al (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9:e89685.  https://doi.org/10.1371/journal.pone.0089685 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A et al (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819–1835CrossRefGoogle Scholar
  42. Ortiz-Monasterio JI, Palacios-Rojas N, Meng E et al (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307.  https://doi.org/10.1016/j.jcs.2007.06.005 CrossRefGoogle Scholar
  43. Paltridge NG, Palmer LJ, Milham PJ et al (2012) Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361:251–260.  https://doi.org/10.1007/s11104-011-1104-4 CrossRefGoogle Scholar
  44. Pausch H, Emmerling R, Schwarzenbacher H, Fries R (2016) A multi-trait meta-analysis with imputed sequence variants reveals twelve QTL for mammary gland morphology in Fleckvieh cattle. Genet Sel Evol 48:14.  https://doi.org/10.1186/s12711-016-0190-4 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Peleg Z, Cakmak I, Ozturk L et al (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369.  https://doi.org/10.1007/s00122-009-1044-z CrossRefPubMedGoogle Scholar
  46. Phillips PC (2008) Epistasis–the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867.  https://doi.org/10.1038/nrg2452 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537.  https://doi.org/10.1007/s00122-006-0453-5 CrossRefPubMedGoogle Scholar
  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959.  https://doi.org/10.1111/j.1471-8286.2007.01758.x CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rabbi IY, Udoh LI, Wolfe M et al (2017) Genome-wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome 03:18.  https://doi.org/10.3835/plantgenome2016.09.0094 CrossRefGoogle Scholar
  50. Reif JC, Maurer HP, Korzun V et al (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292.  https://doi.org/10.1007/s00122-011-1583-y CrossRefPubMedGoogle Scholar
  51. Roshanzamir H, Kordenaeej A, Bostani A (2013) Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum L.) grain using microsatellite markers. IJGPB 2:10–17Google Scholar
  52. Segura V, Vilhjálmsson BJ, Platt A et al (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830.  https://doi.org/10.1038/ng.2314 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sehgal D, Autrique E, Singh R et al (2017) Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci Rep 7:41578.  https://doi.org/10.1038/srep41578 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sharma P, Sheikh I, Kumar S, Verma SK et al (2018) Precise transfers of genes for high grain iron and zinc from wheat-Aegilops substitution lines into wheat through pollen irradiation. Mol Breed 38:81CrossRefGoogle Scholar
  55. Shi R, Li H, Tong Y et al (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104CrossRefGoogle Scholar
  56. Srinivasa J, Arun B, Mishra VK et al (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. Aestivum cross. Theor Appl Genet 127:1643–1651.  https://doi.org/10.1007/s00122-014-2327-6 CrossRefPubMedGoogle Scholar
  57. Suwarno WB, Pixley KV, Palacios-Rojas N et al (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864.  https://doi.org/10.1007/s00122-015-2475-3 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tadesse W, Ogbonnaya FC, Jighly A et al (2015) Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS One 10:e0141339.  https://doi.org/10.1371/journal.pone.0141339 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Thoen MPM, Davila Olivas NH, Kloth KJ et al (2017) Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol 213:1346–1362.  https://doi.org/10.1111/nph.14220 CrossRefPubMedGoogle Scholar
  60. Tiwari VK, Rawat N, Chhuneja P et al (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100:771–776.  https://doi.org/10.1093/jhered/esp030 CrossRefPubMedGoogle Scholar
  61. Tiwari C, Wallwork H, Arun B et al (2016) Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570.  https://doi.org/10.1007/s10681-015-1544-7 CrossRefGoogle Scholar
  62. Velu G, Singh RP, Huerta-Espino J et al (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res 137:261–267.  https://doi.org/10.1016/j.fcr.2012.07.018 CrossRefGoogle Scholar
  63. Wang D, Eskridge KM, Crossa J (2011) Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO. J Agric Biol Environ Stat 16:170–184.  https://doi.org/10.1007/s13253-010-0046-2 CrossRefGoogle Scholar
  64. Wang L, Cui F, Wang J et al (2012) Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. J Genet 91:303–312.  https://doi.org/10.1007/s12041-012-0190-2 CrossRefPubMedGoogle Scholar
  65. Wang X, Pang Y, Zhang J, Wu Z, Chen K, Ali J, Ye G, Xu J, Li Z (2017) Genome-wide and gene-based association mapping for rice eating and cooking characteristics and protein content. Sci Rep 7:17203CrossRefGoogle Scholar
  66. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364CrossRefGoogle Scholar
  67. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets - Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84CrossRefGoogle Scholar
  68. World Health Organization (2016) World health statistics—monitoring health for the SDGs. World Heal Organ.  https://doi.org/10.1017/cbo9781107415324.004
  69. Xu Y, An D, Li H, Xu H (2011) Review: breeding wheat for enhanced micronutrients. Can J Plant Sci 91:231–237.  https://doi.org/10.4141/CJPS10117 CrossRefGoogle Scholar
  70. Xu Y, An D, Liu D et al (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res 138:57–62.  https://doi.org/10.1016/j.fcr.2012.09.017 CrossRefGoogle Scholar
  71. Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208.  https://doi.org/10.1038/ng1702 CrossRefPubMedGoogle Scholar
  72. Yu LX, Lorenz A, Rutkoski J et al (2011) Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet 123:1257–1268.  https://doi.org/10.1007/s00122-011-1664-y CrossRefPubMedGoogle Scholar
  73. Zhang Y, Ni Z, Yao Y, Nie X, Sun Q (2007) Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet 8:40CrossRefGoogle Scholar
  74. Zhao Y, Sun HY, Wang YY et al (2013) QTL mapping for the color, carotenoids and polyphenol oxidase activity of flour in recombinant inbred lines of wheat. Aust J Crop Sci 7:328–337Google Scholar
  75. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824.  https://doi.org/10.1038/ng.2310 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11:407–409.  https://doi.org/10.1038/nmeth.2848 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhou K, Yin JJ, Yu L (2005) Phenolic acid, tocopherol and carotenoid compositions, and antioxidant functions of hard red winter wheat bran. J Agric Food Chem 53:3916–3922.  https://doi.org/10.1021/jf050117c CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jitendra Kumar
    • 1
  • Gautam Saripalli
    • 1
  • Vijay Gahlaut
    • 1
  • Neha Goel
    • 1
  • Prabina Kumar Meher
    • 2
  • Kaushlesh Kumar Mishra
    • 3
  • Prafulla Chandra Mishra
    • 3
  • Deepmala Sehgal
    • 4
  • Prashant Vikram
    • 4
  • Carolina Sansaloni
    • 4
  • Sukhwinder Singh
    • 4
    Email author
  • Pradeep Kumar Sharma
    • 1
  • Pushpendra Kumar Gupta
    • 1
    Email author
  1. 1.Department of Genetics and Plant BreedingCh. Charan Singh UniversityMeerutIndia
  2. 2.Centre for Agricultural BioinformaticsICAR-Indian Agricultural Statistics Research InstituteNew DelhiIndia
  3. 3.Zonal Agricultural Research Station, PowarkhedaJawaharlal Nehru Krishi Vishwa VidylayaJabalpurIndia
  4. 4.International Maize and Wheat Improvement Center (CIMMYT)TexcocoMexico

Personalised recommendations