Advertisement

Euphytica

, 214:198 | Cite as

Molecular cytogenetic characterization of an Agropyron cristatum 6PL chromosome segment conferring superior kernel traits in wheat

  • Jing Zhang
  • Huihui Ma
  • Jinpeng Zhang
  • Shenghui Zhou
  • Haiming Han
  • Weihua Liu
  • Xiuquan Li
  • Xinming Yang
  • Lihui Li
Article
  • 99 Downloads

Abstract

The wild relative of wheat, Agropyron cristatum (L.) Gaertn. (genome PPPP), acts as an important genetic resource for providing valuable genes for wheat improvement and increasing the diversity of cultivated wheat. In the present study, cytogenetic and molecular tools were used to characterize wheat-A. cristatum 6P derivatives. The novel translocation line Pubing260 exhibiting wider flag leaves and superior spike traits was further characterized and analysed. Cytological studies demonstrated that Pubing260 (2n = 42) contained a T3BL·3BS-6PL terminal translocation. We compared molecular markers on chromosomes 6P and 3B and confirmed that the translocated wheat chromosome was 3BS and that the chromosome breakage occurred in bin 3BS9-0.57-0.75. Compared with its recurrent parent Fukuhokomugi, Pubing260 had a wider flag leaf, more spikelets and more grains per spike in two growing seasons. Genetic analysis conducted using BC1F2 and BC2F1 populations suggested that the A. cristatum chromosomal fragment from bin 6PL-0.72-1.00 conferred these potentially valuable agronomic traits. On average, the flag leaf width (FLW), and numbers of grain per spike (GNS), spikelets per spike (SNS) and kernels per spikelet of plants with the translocation were 2 mm wider and 5.1, 0.8 and 0.3 higher, respectively, than those of plants lacking the translocation in segregating populations. Significant and positive correlations were observed among GNS, SNS and FLW. In summary, this study not only reports a novel germplasm that is potentially valuable for wheat improvement but also enriches the genetic resources of wheat.

Keywords

Kernel number Molecular cytogenetics Triticum aestivum Wide flag leaf 

Notes

Acknowledgements

This work was supported by grants from China Agriculture Research System (CARS-03) and the National Key Research and Development Program of China (2016YFD0102000).

Author’s Contributions

LLH conceived the research. ZJ, MHH performed the research. ZJ wrote the paper. LWH produced the translocation lines. ZJP, ZSH, HHM, LXQ and YXM participated in the preparation of the reagents and materials used in the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10681_2018_2276_MOESM1_ESM.xls (58 kb)
Supplementary material 1 (XLS 58 kb)

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745CrossRefGoogle Scholar
  2. Bian J, He H, Shi H, Zhu G, Li C, Zhu C, Peng X, Yu Q, Fu J, He X, Chen X, Hu L, Ouyang L (2014) Quantitative trait loci mapping for flag leaf traits in rice using a chromosome segment substitution line population. Plant Breed 133:203–209.  https://doi.org/10.1111/pbr.12146 CrossRefGoogle Scholar
  3. Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Finnegan EJ, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plants 1:1–6.  https://doi.org/10.1038/nplants.2014.16 CrossRefGoogle Scholar
  4. Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710CrossRefGoogle Scholar
  5. Chen Q, Conner RL, Laroche A (1996) Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor Appl Genet 93:679–684.  https://doi.org/10.1007/bf00224062 CrossRefPubMedGoogle Scholar
  6. Chen M, Luo J, Shao G, Wei X, Tang S, Sheng Z, Song J, Hu P (2012) Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep 31:863–872.  https://doi.org/10.1007/s00299-011-1207-7 CrossRefPubMedGoogle Scholar
  7. Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608CrossRefGoogle Scholar
  8. Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Springer, New YorkCrossRefGoogle Scholar
  9. Ding X, Li X, Xiong L (2011) Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theor Appl Genet 123:815–826.  https://doi.org/10.1007/s00122-011-1629-1 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dong Y, Zhou R, Xu S, Li L, Cauderon Y, Wang R (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178CrossRefGoogle Scholar
  11. Du W, Wang J, Pang Y, Li Y, Chen X, Zhao J, Yang Q, Wu J (2013) Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PLoS ONE 8:e53921CrossRefGoogle Scholar
  12. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866.  https://doi.org/10.1126/science.1143986 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gaju O, Reynolds MP, Sparkes DL, Foulkes MJ (2009) Relationships between large-spike phenotype, grain number, and yield potential in spring wheat. Crop Sci 49:961–973.  https://doi.org/10.2135/cropsci2008.05.0285 CrossRefGoogle Scholar
  14. Gaju O, Reynolds MP, Sparkes DL, Mayes S, Ribas-Vargas G, Crossa J, Foulkes MJ (2014) Relationships between physiological traits, grain number and yield potential in a wheat DH population of large spike phenotype. Field Crops Res 164:126–135.  https://doi.org/10.1016/j.fcr.2014.05.015 CrossRefGoogle Scholar
  15. Gourdji SM, Mathews KL, Reynolds M, Crossa J, Lobell DB (2013) An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc R Soc B Biol Sci 280:1–8.  https://doi.org/10.1098/rspb.2012.2190 CrossRefGoogle Scholar
  16. Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517.  https://doi.org/10.1093/molbev/msm077 CrossRefPubMedGoogle Scholar
  17. Huang C, Zhang J-P, Liu W-H, Yang X-M, Li X-Q, Lu Y-Q, Li L-H, Gao A-N (2013) Identification of wheat-Agropyron cristatum 6P chromosome intercalary translocation lines. J Plant Genet Res 14:606–611Google Scholar
  18. Ikeda-Kawakatsu K (2009) Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol 150:736–747CrossRefGoogle Scholar
  19. Jiang J, Friebe B, Gill BS (1993) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212.  https://doi.org/10.1007/bf00036700 CrossRefGoogle Scholar
  20. Kang H-Y, Zhang Z-J, Xu L-L, Qi W-L, Tang Y, Wang H, Zhu W, Li D-Y, Zeng J, Wang Y, Fan X, Sha L-N, Zhang H-Q, Zhou Y-H (2016) Characterization of wheat-Psathyrostachys huashanica small segment translocation line with enhanced kernels per spike and stripe rust resistance. Genome 59:221–229.  https://doi.org/10.1139/gen-2015-0138 CrossRefPubMedGoogle Scholar
  21. Kuzmanović L, Gennaro A, Benedettelli S, Dodd IC, Quarrie SA, Ceoloni C (2014) Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. J Exp Bot 65:509–525.  https://doi.org/10.1093/jxb/ert393 CrossRefPubMedGoogle Scholar
  22. Kuzmanović L, Ruggeri R, Virili ME, Rossini F, Ceoloni C (2016) Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crops Res 186:86–98.  https://doi.org/10.1016/j.fcr.2015.11.007 CrossRefGoogle Scholar
  23. Li L-H, Li X-Q, Li P, Dong Y-C, Zhao G-S (1997) Establishment of wheat-Agropyron cristatum alien addition lines. I. Cytology of F3, F2, BC1, BC4, and BC3F1 progenies. Acta Genet Sin 24:154–159 (in Chinese with an English abstract) Google Scholar
  24. Li L, Yang X, Li X, Dong Y, Chen X (1998) Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Sci Agric Sin 31:1–6Google Scholar
  25. Li H, Jiang B, Wang J, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016) Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet 130:1–13.  https://doi.org/10.1007/s00122-016-2797-9 CrossRefGoogle Scholar
  26. Liu W-H, Luan Y, Wang J-C, Wang X-G, Su J-J, Zhang J-P, Yang X-M, Gao A-N, Li L-H (2010) Production and identification of wheat-Agropyron cristatum (1· 4P) alien translocation lines. Genome 53:472–481.  https://doi.org/10.1139/g10-023 CrossRefPubMedGoogle Scholar
  27. Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X, Li L (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510CrossRefGoogle Scholar
  28. Lukaszewski AJ (2001) Breeding behavior of the cytogenetically engineered wheat-rye translocation chromosome 1RS·1BL. Crop Sci 41:1062–1065.  https://doi.org/10.2135/cropsci2001.4141062x CrossRefGoogle Scholar
  29. Miura K, Ikeda M, Matsubara A, Song X-J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549CrossRefGoogle Scholar
  30. Molnár-Láng M, Ceoloni C, Doležel J (2015) Alien introgression in wheat-cytogenetics, molecular biology, and genomics. Springer International Publishing, ChamGoogle Scholar
  31. Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494.  https://doi.org/10.1139/g93-067 CrossRefPubMedGoogle Scholar
  32. Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z (2010) Characterization of a wheat- Thinopyrum bessarabicum (T2JS-2BS·2BL) translocation line. Theor Appl Genet 121:589–597.  https://doi.org/10.1007/s00122-010-1332-7 CrossRefPubMedGoogle Scholar
  33. Qi W, Tang Y, Zhu W, Li D, Diao C, Xu L, Zeng J, Wang Y, Fan X, Sha L, Zhang H, Zheng Y, Zhou Y, Kang H (2016) Molecular cytogenetic characterization of a new wheat-rye 1BL·1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta 244:405–416.  https://doi.org/10.1007/s00425-016-2517-3 CrossRefPubMedGoogle Scholar
  34. Ru Z, Feng S, Li G (2015) High-yield potential and effective ways of wheat in Yellow & Huai River Valley Facultative Winter Wheat Region. Sci Agric Sin 48:3388–3393Google Scholar
  35. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109CrossRefGoogle Scholar
  36. Sears ER, Gustafson JP (1993) Use of radiation to transfer alien chromosome segments to wheat. Crop Sci 33:897–901.  https://doi.org/10.2135/cropsci1993.0011183X003300050004x CrossRefGoogle Scholar
  37. Sharma SN, Saini RS, Sharma RK (2003) The genetic control of flag leaf length in normal and late sown durum wheat. J Agric Sci 141:323–331.  https://doi.org/10.1017/s0021859603003642 CrossRefGoogle Scholar
  38. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114.  https://doi.org/10.1007/s00122-004-1740-7 CrossRefPubMedGoogle Scholar
  39. Song L, Jiang L, Han H, Gao A, Yang X, Li L, Liu W (2013) Efficient induction of wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE 8:e69501CrossRefGoogle Scholar
  40. Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016a) Cytological and molecular analysis of wheat-Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Genome 59:840–850.  https://doi.org/10.1139/gen-2016-0065 CrossRefPubMedGoogle Scholar
  41. Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016b) Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129:1023–1034.  https://doi.org/10.1007/s00122-016-2680-8 CrossRefPubMedGoogle Scholar
  42. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomic 4:12–25CrossRefGoogle Scholar
  43. Wang P, Zhou G, Yu H, Yu S (2011) Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet 123:1319–1330.  https://doi.org/10.1007/s00122-011-1669-6 CrossRefPubMedGoogle Scholar
  44. Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20CrossRefGoogle Scholar
  45. Wu Q, Chen Y, Fu L, Zhou S, Chen J, Zhao X, Zhang D, Ouyang S, Wang Z, Li D, Wang G, Zhang D, Yuan C, Wang L, You M, Han J, Liu Z (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351.  https://doi.org/10.1007/s10681-015-1603-0 CrossRefGoogle Scholar
  46. Xue D-W, Chen M-C, Zhou M-X, Chen S, Mao Y, Zhang G-P (2008a) QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. J Zhejiang Univ Sci B 9:938–943.  https://doi.org/10.1631/jzus.B0820105 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008b) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189.  https://doi.org/10.1007/s00122-008-0764-9 CrossRefPubMedGoogle Scholar
  48. Zhang J, Liu W, Han H, Song L, Bai L, Gao Z, Zhang Y, Yang X, Li X, Gao A (2015a) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106:129–136.  https://doi.org/10.1016/j.ygeno.2015.04.003 CrossRefPubMedGoogle Scholar
  49. Zhang J, Zhang J, Liu W, Han H, Lu Y, Yang X, Li X, Li L (2015b) Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128:1827–1837CrossRefGoogle Scholar
  50. Zhang R, Hou F, Feng Y, Zhang W, Zhang M, Chen P (2015c) Characterization of a Triticum aestivum- Dasypyrum villosum T2VS· 2DL translocation line expressing a longer spike and more kernels traits. Theor Appl Genet 128:2415–2425CrossRefGoogle Scholar
  51. Zhang J, Zhang J, Liu W, Wu X, Yang X, Li X, Lu Y, Li L (2016) An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta 244:853–864.  https://doi.org/10.1007/s00425-016-2550-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jing Zhang
    • 1
    • 2
  • Huihui Ma
    • 1
  • Jinpeng Zhang
    • 1
  • Shenghui Zhou
    • 1
  • Haiming Han
    • 1
  • Weihua Liu
    • 1
  • Xiuquan Li
    • 1
  • Xinming Yang
    • 1
  • Lihui Li
    • 1
  1. 1.National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  2. 2.Rice Research InstituteGuangdong Academy of Agricultural Science/Guangdong provincial Key Laboratory of New Technology in Rice BreedingGuangzhouChina

Personalised recommendations