, 214:213 | Cite as

Identification and fine mapping of molecular markers closely linked to fruit spines size ss gene in cucumber (Cucumis sativus L.)

  • Zhang Weiwei 
  • Chen Yue 
  • Zhou Peng 
  • Bao Wenmin 
  • Yang Xuqin 
  • Xu Taibai 
  • She Weiwei 
  • Xu Liqin 
  • Yu Pinggao Email author
  • Pan Junsong Email author


Fruit spine size is one of the importantly external quality traits effected the economic value of cucumber fruit. Morphological–cytological observation of the fruit spine size phenotype indicated that large spine formation arises from an increasing of spiny pedestal cell number caused by cell division, and best periods to accurately score fruit spine size trait was 4th day before flowering to 7th day after flowering according the continuous observation. Genetic analysis showed that a single dominant gene determined the fruit spine size trait in cucumber. BC1 population (189 individuals) of two inbred lines (large spine PI197088 and small spine SA0422) was used for primary mapping of the SS/ss locus with 7 markers covering an interval of 37.1 cM. An F2 segregating population of 1032 individuals constructed from the same two parents (PI197088 and SA0422) was used to fine mapping of the SS/ss locus. Six new markers linked to the gene were successfully screened for construction of a fine linkage map, in which the SS/ss locus was located in the region flanked by marker SE1 (3 recombinants) and SSR43 (2 recombinants) with a 189 kb physical distance. Markers from this study will be valuable for candidate gene cloning and marker-assisted selection for cucumber breeding.


Cucumber Fruit external quality Fruit spine Mapping MAS 



This study was funded by Shanghai Natural Science Foundation (No. 15ZR1429800), the National Natural Science Foundation of China (No. 31672148), and the Youth Fund of the Natural Science Foundation of Jiangsu Province of China (BK20150232).

Compliance with ethical standards

Conflict of intertest

The authors declare that they have no conflict of interest.


  1. Andeweg JM (1956) The breeding of scab-resistant frame cucumbers in the Netherlands. Euphytica 5:185–195Google Scholar
  2. Cavagnaro PF, Senalik DA, Yang L et al (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 15:569CrossRefGoogle Scholar
  3. Clark MS (1997) Plant molecular biology: a laboratory manual. Springer, BerlinCrossRefGoogle Scholar
  4. Dong SY, Miao H, Zhang SP et al (2012) Genetic analysis and gene mapping of white fruit skin in cucumber (Cucumis sativus L.). Acta Bot Boreal Occident Sin 32(11):2177–2181 (in Chinese) Google Scholar
  5. Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874CrossRefGoogle Scholar
  6. Guo S, Zheng Y, Joung JG et al (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 11:384CrossRefGoogle Scholar
  7. Guo CL, Yang XQ, Wang YL et al (2018) Identification and mapping of ts (tender spines), a gene involved in soft spine development in Cucumis sativus. Theor Appl Genet 131:1–12CrossRefGoogle Scholar
  8. Huang SW, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefGoogle Scholar
  9. Ichikawa T, Syono K (1991) Tobacco genetic tumors. Plant Cell Physiol 32:1123–1128Google Scholar
  10. Il’ina LE, Dodueva EI, Ivanova MN et al (2006) The effect of cytokinins on in vitro cultured inbred lines of Raphanus sativus var. radicula Pers. with genetically determined tumorigenesis. Rus J Plant Physiol 53:514–522CrossRefGoogle Scholar
  11. Jiang S, Yuan XJ, Pan JS et al (2008) Quantitative trait locus analysis of lateral branch-related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Sci China C Life Sci 51:833–841CrossRefGoogle Scholar
  12. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  13. Li Z, Huang S, Liu S et al (2009) Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381–1385CrossRefGoogle Scholar
  14. Li YH, Yang LM, Pathak M et al (2011) Fine genetic mapping of cp, a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123(6):973–983CrossRefGoogle Scholar
  15. Lohar PD, Schaff JE, Laskey GJ et al (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214CrossRefGoogle Scholar
  16. Ma YY, Li L, Li YH et al (2008) Genetic analysis and gene mapping of a new recessive long-culm mutant in rice. Sci Agric Sin 41(12):3967–3973 (in Chinese) Google Scholar
  17. Martin C, Bhatt K, Baumann K et al (2002) The mechanics of cell fate determination in petals. Philos Trans R Soc Lond B Biol Sci 357:809–813CrossRefGoogle Scholar
  18. Matveeva VT, Frolova VN, Smets R et al (2004) Hormonal control of tumor formation in radish. J Plant Growth Regul 23:37–43CrossRefGoogle Scholar
  19. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefGoogle Scholar
  20. Nan HY, Li YH, Chang RZ et al (2009) Development and idenfication of InDel marker based on candidate gene rhg1 for resistance to soybean cystnematode. Acta Agron Sin 35(7):1236–1243 (in Chinese) CrossRefGoogle Scholar
  21. Nie JT, He HL, Peng JL et al (2015) Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35(1):7CrossRefGoogle Scholar
  22. Payne T, Clement J, Arnold D et al (1999) Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126:671–682PubMedGoogle Scholar
  23. Pierce LK, Wehner TC (1990) Review of genes and linkage groups in cucumber. HortScience 25:605–615Google Scholar
  24. Ren Y, Zhang ZH, Liu JH et al (2009) An integrated genetic and cytogenentic map of the cucumber genome. PLoS ONE 4:e5795CrossRefGoogle Scholar
  25. Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280CrossRefGoogle Scholar
  26. Suo J, Liang X, Pu L et al (2003) Identification of GhMYB109 encoding a R2R3 MYB transcriptional factor that expresses specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta 1630:25–34CrossRefGoogle Scholar
  27. Wang GL, Qin ZW, Zhou XY et al (2007) Genetic analysis and SSR markers of tuberculate trait in Cucumis sativus. Chin Bull Bot 24:168–172Google Scholar
  28. Wang YL, Nie JT, Chen HM et al (2016) Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Theor Appl Genet 29:305–316CrossRefGoogle Scholar
  29. Weng Y (2017) The cucumber genome. In: Grumet R et al (eds) Genetics and genomics of cucurbitaceae. Plant genetics and genomics: crops and models. CrossRefGoogle Scholar
  30. Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35CrossRefGoogle Scholar
  31. Xie Q, Liu PN, Shi LX et al (2018) Combined fine mapping, genetic diversity, and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. Theor Appl Genet 131:1239–1252CrossRefGoogle Scholar
  32. Yang X, Zhang W, Li Y et al (2014a) High-resolution mapping of the dull fruit skin gene D in cucumber (Cucumis sativus L.). Mol Breed 33(1):15–22CrossRefGoogle Scholar
  33. Yang X, Li Y, Zhang W et al (2014b) Fine mapping of the uniform immature fruit color gene u in cucumber (Cucumis sativus L.). Euphytica 196(3):341–348CrossRefGoogle Scholar
  34. Yang XQ, Zhang WW, He HL et al (2014c) Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). Plant J. 78(6):1034–1046CrossRefGoogle Scholar
  35. Yuan XJ, Li XZ, Pan JS et al (2008a) Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breeding 127(2):180–188CrossRefGoogle Scholar
  36. Yuan XJ, Pan JS, Cai R et al (2008b) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491CrossRefGoogle Scholar
  37. Yuste-Lisbona FJ, Capel C, Gómez-Guillamón ML et al (2011) Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon(Cucumis melo L.). Theor Appl Genet 122:747–758CrossRefGoogle Scholar
  38. Zhang WW, He HL, Guan Y et al (2010) Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theor Appl Genet 120(3):645–654CrossRefGoogle Scholar
  39. Zhang WW, Pan JS, He HL et al (2012) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 124:249–259CrossRefGoogle Scholar
  40. Zhang SP, Miao H, Sun RF et al (2013) Localization of a new gene for bitterness in cucumber. J Hered 104(1):134–139CrossRefGoogle Scholar
  41. Zheng GC, Gu ZP (1993) Biological microtechnique. Higher Education Press, BeijingGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Plant Science and TechnologyShanghai Vocational College of Agriculture and ForestryShanghaiChina
  2. 2.School of Agriculture and BiologyShanghai Jiaotong UniversityShanghaiChina
  3. 3.Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province & School of Life ScienceJiangsu Normal UniversityXuzhouChina

Personalised recommendations