, 214:109 | Cite as

Genetic dissection of rice (Oryza sativa L.) tiller, plant height, and grain yield based on QTL mapping and metaanalysis

  • L. Lei
  • H. L. Zheng
  • J. G. Wang
  • H. L. Liu
  • J. Sun
  • H. W. Zhao
  • L. M. Yang
  • D. T. ZouEmail author


Tiller number per plant (TN) and plant height (PH) are important agronomic traits related to grain yield (GY) in rice (Oryza sativa L.). A total of 30 additive quantitative trait loci (A-QTL) and 9 significant additive × environment interaction QTLs (AE-QTL) were detected, while the phenotypic and QTL correlations confirmed the intrinsic relationship of the three traits. These QTLs were integrated with 986 QTLs from previous studies by metaanalysis. Consensus maps contained 7156 markers for a total map length of 1112.71 cM, onto which 863 QTLs were projected; 78 meta-QTLs (MQTLs) covering 11 of the 30 QTLs were detected from the cross between Dongnong422 and Kongyu131 in this study. A total of 705 predicted genes were distributed over the 21 MQTL intervals with physical length <0.3 Mb; 13 of the 21 MQTLs, and 34 candidate genes related to grain yield and plant development, were screened. Five major QTLs, viz. qGY6-2, qPH7-2, qPH6-3, qTN6-1, and qTN7-1, were not detected in the MQTL intervals and could be used as newly discovered QTLs. Candidate genes within these QTL intervals will play a meaningful role in molecular marker-assisted selection and map-based cloning of rice TN, PH, and GY.


QTL analysis Metaanalysis Rice (Oryza sativa L.) Yield Plant height Tiller number per plant 



This work was supported by the National Natural Science Foundation (31601377).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Supplementary material

10681_2018_2187_MOESM1_ESM.doc (230 kb)
Supplementary material 1 (DOC 230 kb)


  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745CrossRefPubMedGoogle Scholar
  2. Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh S, Palchamy A, Sadasivam S, Sarkarung S (2003) Genetic analysis of drought resistance in rice by molecular markers. Crop Sci 43(4):1457–1469CrossRefGoogle Scholar
  3. Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact MPMI 21(7):859–868CrossRefPubMedGoogle Scholar
  4. Cho Y, McCouch S, Kuiper M, Kang M-R, Pot J, Groenen J, Eun M (1998) Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97(3):370–380CrossRefGoogle Scholar
  5. Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: a meta-analysis from a drought QTL database. Rice 2(2–3):115–128CrossRefGoogle Scholar
  6. Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theißen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J Cell Mol Biol 61(5):767–781CrossRefGoogle Scholar
  7. Cui K, Peng S, Ying Y, Yu S, Xu C (2015) Molecular dissection of the relationships among tiller number, plant height and heading date in rice. Plant Prod Sci 7(3):309–318CrossRefGoogle Scholar
  8. Duan Y, Li S, Chen Z, Zheng L, Diao Z, Zhou Y, Tao L, Guan H, Pan R, Xue Y (2012) Dwarf and deformed flower? Encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativa L.). Plant J 72(5):829–842CrossRefPubMedGoogle Scholar
  9. Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5(10):3–8CrossRefGoogle Scholar
  10. Gothandam KM, Nalini E, Karthikeyan S, Jeongsheop S (2010) OsPRP3, a flower-specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol 72(1–2):125–135CrossRefPubMedGoogle Scholar
  11. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148(1):479–494PubMedPubMedCentralGoogle Scholar
  12. Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48(3):523–529CrossRefPubMedGoogle Scholar
  13. Hiroshi S, Cogan Noel OI, Spangenberg GC, Forster JW (2012) Quantitative trait locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genet 13(1):1–12Google Scholar
  14. Hong Z, Ueguchitanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15(12):2900–2910CrossRefPubMedPubMedCentralGoogle Scholar
  15. Immanuel SC, Nagarajan P, Thiyagarajan K, Bharathi M, Rabindran R (2011) Genetic parameters of variability, correlation and path coefficient studies for grain yield and other yield attributes among rice blast disease resistant genotypes of rice (Oryza sativa L.). Afr J Biotech 10(17):3322–3334CrossRefGoogle Scholar
  16. Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63(3):317–324CrossRefPubMedPubMedCentralGoogle Scholar
  17. Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genom 10(1):1–14CrossRefGoogle Scholar
  18. Kondhia A, Tabien RE, Ibrahim A (2015) Evaluation and selection of high biomass rice (Oryza sativa L.) for drought tolerance. Am J Plant Sci 6(12):1962–1972CrossRefGoogle Scholar
  19. Larsen RJ, Marx ML (1985) An introduction to probability and its applications, vol 85, (2). Prentice Hall, Englewood Cliffs, pp 2061–2071Google Scholar
  20. Li Z, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice shape. (Oryza sativa L.). Mol Breed 4(5):419–426CrossRefGoogle Scholar
  21. Li Z, Paterson AH, Pinson SRM, Stansel JW (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109(2):79–84CrossRefGoogle Scholar
  22. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F (2003) Control of tillering in rice. Nature 422(6932):618–621CrossRefPubMedGoogle Scholar
  23. Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C (2010) Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 20(7):838–849CrossRefPubMedGoogle Scholar
  24. Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011) Mutations in the F-box gene larger panicle improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013CrossRefPubMedGoogle Scholar
  25. Li WT, Liu C, Liu YX, Pu ZE, Dai SF, Wang JR, Lan XJ, Zheng YL, Wei YM (2013) Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica 189(1):31–49CrossRefGoogle Scholar
  26. Loughlin J, Dowling B, Mustafa Z, Smith A, Sykes B, Chapman K (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10(1):1–24CrossRefGoogle Scholar
  27. Ma X, Feng DS, Wang HG, Li XF, Kong LR (2011) Cloning and expression analysis of wheat cytokinin oxidase/dehydrogenase gene TaCKX3. Plant Mol Biol Report 29(1):98–105CrossRefGoogle Scholar
  28. Machado S, Bynum ED, Archer TL, Lascano RJ, Wilson LT, Bordovsky J, Segarra E, Bronson K, Nesmith DM, Xu W (2002) Spatial and temporal variability of corn growth and grain yield. Crop Sci 42(5):1564–1576CrossRefGoogle Scholar
  29. Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10(8):565–577CrossRefPubMedGoogle Scholar
  30. Maekawa M, Takamure I, Ahmed N, Kyozuka J (2005) Bunketsu-waito, one of the tillering dwarfs, is controlled by a single recessive gene in rice (Oryza sativa L.). Breed Sci 55(2):193–196CrossRefGoogle Scholar
  31. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199–207CrossRefPubMedGoogle Scholar
  32. Moncada P, Martinez CP, Borrero J, Chatel M, Hjr G, Guimaraes E, Tohme J, Mccouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102(1):41–52CrossRefGoogle Scholar
  33. Ni DH, Li J, Duan YB, Yang YC, Wei PC, Xu RF, Li CR, Liang DD, Li H, Song FS (2014) Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). J Exp Bot 65(8):2107–2117CrossRefPubMedGoogle Scholar
  34. Paterson AH, Lin Y-R, Li Z, Schertz KF (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269(5231):1714–1718CrossRefPubMedGoogle Scholar
  35. Peng S, Khush GS, Cassman KG (1994) Evolution of the new plant ideo-type for increased yield potential. In: Cassman KG (ed) Breaking the yield barrier. IRRI, Los Banos, pp 5–20Google Scholar
  36. Ranawake A, Amarasinghe U (2015) Changes in yield potential of traditional rice cultivars with variability in plant height, tillers per plant, fertility and days to maturity. J Sci Res Rep 4:114–122Google Scholar
  37. Rong J, Feltus FA, Waghmare VN, Pierce GJ, Peng WC, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176(4):2577–2588CrossRefPubMedPubMedCentralGoogle Scholar
  38. Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield-related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14(1):1–22CrossRefGoogle Scholar
  39. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24(1):105–109CrossRefPubMedGoogle Scholar
  40. Sarla N, Pradeep M, Reddy LV, Siddiq EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6(1):1–12Google Scholar
  41. Septiningsih E, Prasetiyono J, Lubis E, Tai T, Tjubaryat T, Moeljopawiro S, McCouch S (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432CrossRefPubMedGoogle Scholar
  42. Setter TL, Laureles EV, Mazaredo AM (1997) Lodging reduces the yield of rice by self-shading and reductions in canopy photosynthesis. Field Crops Res 49(2–3):95–106CrossRefGoogle Scholar
  43. Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28(15):2082–2083CrossRefPubMedPubMedCentralGoogle Scholar
  44. Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLs derived from interspecific crosses of rice reveals consensus regions and candidate genes. Plant Mol Biol Rep 29(3):663–680CrossRefGoogle Scholar
  45. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11(8):1441–1452CrossRefPubMedPubMedCentralGoogle Scholar
  46. Venuprasad R, Dalid CO, Del VM, Zhao D, Espiritu M, Sta Cruz MT, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120(1):177–190CrossRefPubMedGoogle Scholar
  47. Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8(1):1–16CrossRefGoogle Scholar
  48. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78CrossRefPubMedGoogle Scholar
  49. Wang JX, Sun J, Li CX, Liu HL, Wang JG, Zhao HW, Zou DT (2016a) Genetic dissection of the developmental behavior of plant height in rice under different water supply conditions. J Integr Agric 15(12):2688–2702CrossRefGoogle Scholar
  50. Wang Y, Xu J, Deng D, Ding H, Bian Y, Yin Z, Wu Y, Zhou B, Zhao Y (2016b) A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 243(2):459–471CrossRefPubMedGoogle Scholar
  51. Wu Y, Huang M, Tao X, Guo T, Chen Z, Xiao W (2016) Quantitative trait loci identification and meta-analysis of rice panicle-related traits. Mol Genet Genomics 291(5):1927–1940CrossRefPubMedGoogle Scholar
  52. Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Tagtheoretical & Applied Geneticstheoretische Und Angewandte Genetik 92(2):230–244CrossRefGoogle Scholar
  53. Xing Y, Tan Y, Xu C, Hua J, Sun X (2001) Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin 43(8):840–845Google Scholar
  54. Xiong ZM, Hangzhou H (1994) Research outline on rice genetics in China. Chin Rice Res Newsl 2:10Google Scholar
  55. Xu YB, Shen ZT (1991) Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.). Theor Appl Genet 83(2):243–249CrossRefPubMedGoogle Scholar
  56. Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97(1–2):267–274CrossRefGoogle Scholar
  57. Yang W, Gao M, Yin X, Liu J, Xu Y, Zeng L, Li Q, Zhang S, Wang J, Zhang X (2013) Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Mol Plant 6(6):1945–1960CrossRefPubMedGoogle Scholar
  58. Yang LM, Liu HL, Lei L, Zhao HW, Wang JG, Li N, Sun J, Zheng HL, Zou DT (2018) Identification of QTLs controlling low-temperature germinability and cold tolerance at the seedling stage in rice (Oryza sativa L.). Euphytica 214(1):13CrossRefGoogle Scholar
  59. Yin Z, Qi H, Chen Q, Zhang Z, Jiang H, Zhu R, Hu Z, Wu X, Li C, Zhang Y (2017) Soybean plant height QTL mapping and meta-analysis for mining candidate genes. Plant Breed 136(5):688–698CrossRefGoogle Scholar
  60. Zhang X, Guo X, Lei C, Cheng Z, Lin Q, Wang J, Wu F, Wang J, Wan J (2011) Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Mol Biol Report 29(1):185–196CrossRefGoogle Scholar
  61. Zhang H, Uddin MS, Zou C, Xie C, Xu Y, Li WX (2014) Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. J Plant Ecol 56(3):262–270Google Scholar
  62. Zhao L, Liu HJ, Zhang CX, Wang QY, Li XH (2015) Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Genet Mol Res Gmr 14(1):961–970CrossRefPubMedGoogle Scholar
  63. Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW, Zheng KL (2002) Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet 105(8):1137–1145CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of AgricultureNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations