, 214:136 | Cite as

Genetic analysis and QTL mapping of fruit-related traits in wax gourd (Benincasa hispida)

  • Wenrui Liu
  • Biao Jiang
  • Qingwu Peng
  • Xiaoming He
  • Yu’e Lin
  • Min Wang
  • Zhaojun Liang
  • Dasen XieEmail author
  • Kailin HuEmail author


As an important fruit vegetable, fruit-related traits have become one of the breeding hotspots of wax gourd (Benincasa hispida). The fruit traits have an important role on the quality and yield of wax gourd, and QTL mapping of these traits will provide solid basis for fruit character improvement as well as high-yield breeding. In this study, the inheritance of four fruit-related traits, including fruit weight (FW), fruit length (FL), fruit diameter (FD) and flesh thickness (FT), was analyzed. All the frequency distribution of the four traits in an F2 population showed a single peak skewed distribution, which proved them to be quantitative. Subsequently, based on the high-density genetic map using 140 F2 individuals, nine QTLs associated with the four traits were detected on chromosome 3, 4, 5, 6, 9, 10 and 11. Four of the nine QTLs had major effect, which were responsible for more than 10.0% of phenotypic variance. Furthermore, the major QTLs of FW, FD and FT shared similar location intervals, which implied that this location might contain some pleiotropic genes. This is the first report on QTL mapping of quantitative trait in wax gourd, which plays an important role for fine mapping of these important fruit traits.


Wax gourd Fruit-related traits Genetic analysis Quantitative trait loci 



This work was partially supported by the National Natural Science Foundation of China (31672143), Guangdong special project youth top-notch talent project (2016TQ03N529), the Natural Science Foundation of Guangdong Province (2015A030311008), the Science and Technology Program of Guangdong (2015B020231004 and 2016B020201005), and Pearl River S&T Nova Program of Guangzhou (201610010102 and 201806010030).


  1. Alpert KB, Tanksley SD (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. PNAS 93(26):15503–15507CrossRefPubMedGoogle Scholar
  2. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  3. Bo KL, Ma Z, Chen JF, Weng YQ (2015) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet 128:25–39CrossRefPubMedGoogle Scholar
  4. Chen QJ, Zhang HY, Wang YJ, Li WY, Zhang F, Mao AJ, Cheng JH, Chen MY (2010) Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Sci Agric Sin 43(1):112–122 (in Chinese) Google Scholar
  5. Cheng JW, Wu ZM, Cui JJ, Li WP, Tan S, Hu KL (2013) Statistical and comparative analysis of vegetable genome size. Acta Hortic Sin 40(1):135–144 (in Chinese) Google Scholar
  6. Chopra RN, Nayar SL, Chopra K (1956) Glossary of Indian medicinal plants. Institute of Scientific and Industrial Research (CSIR), New Delhi, pp 35–36Google Scholar
  7. Cui JJ, Cheng JW, Wang GP, Tang X, Wu ZM, Lin MB, Li LF, Hu KL (2015) QTL analysis of three flower-related traits based on an interspecific genetic map of Luffa. Euphytica 202(1):45–54CrossRefGoogle Scholar
  8. Díaz A, Zarouri B, Fergany M, Eduardo I, Álvarez JM, Picó B, Monforte AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘piel de sapo’ melon (Cucumis melo L.). PLoS ONE 9(12):e116098CrossRefGoogle Scholar
  9. Dijkuizen A, Staub JE (2002) QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): effects of environment and genetic background. J New Seeds 4:1–30CrossRefGoogle Scholar
  10. Frary A, Nesbitt TC, Frary A, Gradillo S, van der Knaap E et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88CrossRefPubMedGoogle Scholar
  11. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109(29):11872–11877CrossRefPubMedGoogle Scholar
  12. Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY et al (2013) The draft genome of watermelon (Citrullus lanatus) and the resequencing of 20 diverse accessions. Nat Genet 45:51–58CrossRefPubMedGoogle Scholar
  13. Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefPubMedGoogle Scholar
  14. Illa-Berenguer E, Van Houten J, Huang ZJ, van der Knaap E (2015) Rapid and reliable identification of fruit weight and locule number by QTL-seq. Theor Appl Genet 128(7):1329–1342CrossRefPubMedGoogle Scholar
  15. Jiang B, Xie DS, Liu WR, Peng QW, He XM (2013) De Novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida). PLoS ONE 8(8):e71054CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jiang B, Liu WR, Xie DS, Peng QW, He XM, Lin YE, Liang ZJ (2015) High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. BMC Genomics 16:1035CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kennard WC, Havey MJ (1995) Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet 91:53–61PubMedGoogle Scholar
  18. Lampe JW (1999) Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. Am J Clin Nutr 70(3):475–490CrossRefGoogle Scholar
  19. Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Cheng ZC, Zhang RW, Mu SQ, Li M, Zhang ZX, Fang ZY (2011) Mapping QTLs for fruit-associated traits in Cucumis sativus L. Sci Agric Sin 44(24):5031–5040 (in Chinese) Google Scholar
  20. Monfort AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758CrossRefGoogle Scholar
  21. Pandey S, Kumar S, Mishra U, Rai A, Singh M, Rai M (2008) Genetic diversity in Indian ash gourd (Benincasa hispida) accessions a s revealed by quantitative traits and RAPD markers. Sci Hortic 118:80–86CrossRefGoogle Scholar
  22. Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, Pitrat M, Lelievre JM (2002) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309CrossRefPubMedPubMedCentralGoogle Scholar
  23. Prothro J, Sandlin K, Abdel-Haleem H, Bachlava E, White V, Knapp S, McGregor C (2012a) Main and epistatic quantitative trait loci associated with seed size in watermelon. J Am Soc Hortic Sci 137(6):452–457Google Scholar
  24. Prothro J, Sandlin K, Gill R, Bachlava E, White V, Knapp SJ, McGregor C (2012b) Mapping of the Egusi seed trait locus (eg) and quantitative trait loci associated with seed oil percentage in watermelon. J Am Soc Hortic Sci 137(5):311–315Google Scholar
  25. Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, Zeng P, Wang SH, Shang Y, Gu XF et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45(12):1510–1515CrossRefPubMedGoogle Scholar
  26. Ren Y, McGregor C, Zhang Y, Gong GY, Zhang HY, Guo SG, Sun HH, Cai WT, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:33CrossRefPubMedPubMedCentralGoogle Scholar
  27. Serquen FC, Bacher J, Staub JE (1997) Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random amplified polymorphic DNA markers. Mol Breed 3(4):257–268CrossRefGoogle Scholar
  28. Staub JE, Serquen FC (1996) Genetic markers, map construction, and their application in plant breeding. Hortic Sci 31(5):729–741Google Scholar
  29. Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N, Fukushima M, Suzuki S, Tarora K, Tamaki M, Sakamoto M, Terauchi R, Matsumura H (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropic and subtropical regions. DNA Res 24(1):51–58PubMedGoogle Scholar
  30. Verma VK, Behera TK, Munshi AD, Parida SK, Mohapatra T (2007) Genetic diversity of ash gourd [Benincasa hispida (Thunb.) Cogn.] inbred lines based on RAPD and ISSR markers and their hybrid performance. Sci Hortic 113:231–237CrossRefGoogle Scholar
  31. Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh (
  32. Wei QZ, WangYZ Qin XD, Zhang YX, Zhagn ZT, Wang J et al (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom 15:1158CrossRefGoogle Scholar
  33. Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, Deng SL, He HL, Si MX, Lai L, Wu AZ, Zhu LH, Cai R (2008a) Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed 127(2):180–188CrossRefGoogle Scholar
  34. Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, Li Z, He HL, Zhang C, Si LT, Zhu LH (2008b) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164(2):473–491CrossRefGoogle Scholar
  35. Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201CrossRefPubMedGoogle Scholar
  36. Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  37. Zhang JJ, Liu SG, Yu MQ, Ao QY (2009) Research on wax gourd agronomic characters and genetic diversity. J Sichuan Univ 46(6):1855–1861 (in Chinese) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Wenrui Liu
    • 1
    • 2
  • Biao Jiang
    • 2
  • Qingwu Peng
    • 2
  • Xiaoming He
    • 2
  • Yu’e Lin
    • 2
  • Min Wang
    • 2
  • Zhaojun Liang
    • 2
  • Dasen Xie
    • 2
    Email author
  • Kailin Hu
    • 1
    Email author
  1. 1.College of HorticultureSouth China Agricultural UniversityGuangzhouChina
  2. 2.Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina

Personalised recommendations