Advertisement

Euphytica

, 214:82 | Cite as

Genetic analysis of the fiber quality and yield traits in G. hirsutum background using chromosome segments substitution lines (CSSLs) from Gossypium barbadense

  • Lixue Guo
  • Yuzhen Shi
  • Juwu Gong
  • Aiying Liu
  • Yunna Tan
  • Wankui Gong
  • Junwen Li
  • Tingting Chen
  • Haihong Shang
  • Qun Ge
  • Quanwei Lu
  • Jie Sun
  • Youlu Yuan
Article
  • 138 Downloads

Abstract

Developing chromosome segments substitution lines (CSSLs) is an effective method for broadening the cotton germplasm resource, and improving the fiber quality and yield traits. In this study, the 1054 F2 individual plants and 116 F2:3 lineages were generated from the two parents of MBI9749 and MBI9915 selected from BC5F3:5 lines which originated from hybridization of CCRI36 and Hai1, and advanced backcrossing and repeated selfing. Genotypes of the parents and F2 population were analyzed. The results showed that 19 segments were introgressed for MBI9749 and 12 segments were introgressed for MBI9915, distributing on 17 linkage groups. The average background recovery rate to the recurrent parent CCRI36 was 96.70% for the two parents. An average of 16.46 segments was introgressed in F2 population. The average recovery rate of 1054 individual plants was 96.85%, and the mean length of sea island introgression segments was 157.18 cM, accounting for 3.15% of detection length. QTL mapping analysis detected 22 QTLs associated with fiber quality and yield traits in the F2 and F2:3 populations. These QTLs distributed on seven chromosomes, and the phenotypic variation was explained ranging from 1.20 to 14.61%. Four stable QTLs were detected in F2 and F2:3 populations, simultaneously. We found that eight QTLs were in agreement with the previous research. Six QTL-clusters were identified for fiber quality and yield traits, in which five QTL-clusters were on chromosome20. The results indicated that most of QTL-clusters always improve the fiber quality and have negative additive effect for yield related traits. This study demonstrated that CSSLs provide basis for fine mapping of the fiber quality and yield traits in future, and could be efficiently used for pyramiding favourable alleles to develop the new germplasms for breeding by molecular marker-assisted selection.

Keywords

Cotton CSSL Fiber quality and yield QTL 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31101188), the National Key R&D Program for Crop Breeding (2016YFD0100300), the National Agricultural Science and Technology Innovation Project for CAAS and the Project of Director (161016201733).

References

  1. Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228CrossRefPubMedGoogle Scholar
  2. Cao ZB, Zhu XF, Chen H et al (2015) Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol Breed 35(11):1–13CrossRefGoogle Scholar
  3. Chen ZJ, Scheffler BE, Dennis E et al (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145(4):1303–1310CrossRefPubMedPubMedCentralGoogle Scholar
  4. Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79(3):175–179CrossRefGoogle Scholar
  5. Fonceka D, Tossim HA, Rivallan R et al (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS ONE 7(11):e48642CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fu Y, Yuan DD, Hu WJ et al (2013) Development of Gossypium barbadense chromosome 18 segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum and mapping of QTLs related to agronomic traits. Acta Agron Sin 39(1):21–28CrossRefGoogle Scholar
  7. Guo W, Cai C, Wang C et al (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176(1):527–541CrossRefPubMedPubMedCentralGoogle Scholar
  8. He R (2014) The evaluation and identifying QTL of chromosome segment substitution lines (BC5F3, BC5F3:4, BC5F3:5) in CCRI36 background of Gossypium hirsutum L. Dissertation, Southwest UniversityGoogle Scholar
  9. He R, Shi Y, Zhang J et al (2014) QTL mapping for plant height using chromosome segment substitution lines in upland cotton. Acta Agron Sin 40(3):457–465CrossRefGoogle Scholar
  10. He Q, Yang H, Xiang S et al (2015) Fine mapping of the genetic locus L1, conferring black pods using a chromosome segment substitution line population of soybean. Plant Breed 134(4):437–445CrossRefGoogle Scholar
  11. Islam MS, Zeng L, Thyssen GN et al (2016a) Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes. Theor Appl Genet 129(6):1071–1086CrossRefPubMedGoogle Scholar
  12. Islam MS, Fang DD, Thyssen GN et al (2016b) Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. BMC Plant Biol 16(1):36CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lan MJ, Yang ZM, Shi YZ et al (2011) Assessment of substitution lines and identification of QTL related to fiber yield and quality traits in BC4F2 and BC4F3 population from Gossypium hirsutum × Gossypium barbadense. Sci Agric Sin 44:3086–3097Google Scholar
  14. Li L (2008) Molecular marker study on cotton fiber quality, yield and resistance to Verticillium wilt using advanced backcross recombinational lines between upland cotton (G. hirsutum L.) and island cotton (G. barbadense L.). Dissertation, Chinese Academy of Agriculture SciencesGoogle Scholar
  15. Li YL, Zhou RH, Wang J et al (2012) Novel and favourable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol Breed 29:627–643CrossRefGoogle Scholar
  16. Li BT, Shi YZ, Gong WK et al (2016) Genetic effects and heterosis of yield and yield component traits based on Gossypium barbadense chromosome segment substitution lines in two Gossypium hirsutum backgrounds. PLoS ONE 11(6):e0157978CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liang Y (2010) Construction of chromosome segment substitution lines and primary QTL mapping in early-maturing upland cotton. Dissertation, Chinese Academy of Agricultural SciencesGoogle Scholar
  18. Ma LJ, Shi YZ, Lan MJ et al (2013) Evaluation of chromosome segment substitution lines related to fiber yield and quality traits from Gossypium hirsutum × Gossypium barbadense. Cotton Sci 25(6):486–495Google Scholar
  19. Malik W, Ashraf J, Iqbal M et al (2014) Molecular markers and cotton genetic improvement: current status and future prospects. Sci World J.  https://doi.org/10.1155/2014/607091 CrossRefGoogle Scholar
  20. Manangkil OE, Vu HTT, Mori N et al (2013) Mapping of quantitative trait loci controlling seedling vigor in rice (Oryza sativa L.) under submergence. Euphytica 192(1):63–75CrossRefGoogle Scholar
  21. Marc L, Danny L, John J et al (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10(1):1–24CrossRefGoogle Scholar
  22. Nie XH, Tu JL, Wang B et al (2015) A BIL population derived from G. hirsutum and G. barbadense provides a resource for cotton genetics and breeding. PLoS ONE 10(10):e0141064CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ning ZY, Chen H, Mei HX et al (2014) Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica 195(1):143–156CrossRefGoogle Scholar
  24. Paterson AH, Brubaker C, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127CrossRefGoogle Scholar
  25. Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107(2):340–352CrossRefPubMedGoogle Scholar
  26. Said JI, Lin Z, Zhang X et al (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14(1):776CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shen XL, Guo WZ, Lu QX et al (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155(3):371–380CrossRefGoogle Scholar
  28. Shi YZ, Li WT, Li AG (2015) Constructing a high-density linkage map for Gossypium hirsutum × G. barbadense and identifying QTLs for lint percentage. J Integr Plant Biol 57(5):450–467CrossRefPubMedGoogle Scholar
  29. Song WW (2016) Genetic effect of the introgressed segments in the introgression line from Gossypium hirsutum × Gossypium barbadense. Dissertation, Chinese Academy of Agricultural SciencesGoogle Scholar
  30. Sun Q, Cai YF, Xie YF et al (2010) Gene expression profiling during gland morphogenesis of a mutant and a glandless upland cotton. Mol Biol Rep 37(7):3319–3325CrossRefPubMedGoogle Scholar
  31. Tang S, Teng Z, Zhai T et al (2015) Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 201(2):195–213CrossRefGoogle Scholar
  32. Tomson MJ, Tai TH, Mcclung AM et al (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza fufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493CrossRefGoogle Scholar
  33. Ulloa M, Meredith WR (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4(3):161–170Google Scholar
  34. Van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99(2):232–236CrossRefPubMedGoogle Scholar
  35. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78CrossRefPubMedGoogle Scholar
  36. Wang J, Wan X, Crossa J et al (2006) QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res 88(2):93–104CrossRefPubMedGoogle Scholar
  37. Wang FR, Gong YC, Zhang CY et al (2011) Genetic effects of introgression genomic components from Sea Island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 181(1):41–53CrossRefGoogle Scholar
  38. Wang P, Zhu Y, Song X et al (2012a) Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 124(8):1415–1428CrossRefPubMedGoogle Scholar
  39. Wang W, He Q, Yang H et al (2012b) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica 189(2):293–307CrossRefGoogle Scholar
  40. Wang FR, Xu ZZ, Sun R et al (2013) Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breed (2013) 32:547–562CrossRefGoogle Scholar
  41. Wang H, Huang C, Guo H et al (2015) QTL mapping for fiber and yield traits in upland cotton under multiple environments. PLoS ONE 10(6):e0130742.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang FR, Zhang CY, Liu GD et al (2016) Phenotypic variation analysis and QTL mapping for cotton (Gossypium hirsutum L.) fiber quality grown in different cotton-producing regions. Euphytica 211(2):169–183CrossRefGoogle Scholar
  43. Wei X, Wang B, Peng Q et al (2015) Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed 35(3):1–13CrossRefGoogle Scholar
  44. Wu MQ, Zhang XL, Nie YC et al (2003) Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. Acta Genet Sin 30(5):443–452PubMedGoogle Scholar
  45. Xu P, Zhu J, Zhang XG et al (2012) Molecular mapping and identification of QTLs for fiber micronaire on chromosome 7 from Gossypium klotzschianum. Acta Agron Sin 38(3):447–453CrossRefGoogle Scholar
  46. Yang ZM, Li JZ, Li AG et al (2009) Developing chromosome segment substitution lines (CSSLs) in cotton (Gossypium) using advanced backcross and MAS. Mol Plant Breed 7:233–241Google Scholar
  47. Yang Y, Guo M, Li R et al (2015) Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment substitution lines and fine mapping of qPC-1, in rice (Oryza sativa L.). Mol Breed 35(6):1–9CrossRefGoogle Scholar
  48. Yu ZW, Yu SX, Wang W et al (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49(5):716–724CrossRefGoogle Scholar
  49. Yu J, Kohel RJ, Smith CW (2010) The construction of a tetraploid cotton genome wide comprehensive reference map. Genomics 95(4):230–240CrossRefPubMedGoogle Scholar
  50. Yu J, Zhang K, Li S et al (2013a) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126(1):275–287CrossRefPubMedGoogle Scholar
  51. Yu JW, Yu SX, Gore M et al (2013b) Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191(3):375–389CrossRefGoogle Scholar
  52. Yu JZ, Ulloa M, Hoffman SM et al (2014) Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population. Mol Genet Genomics 289(6):1347–1367CrossRefPubMedGoogle Scholar
  53. Zeng L, Meredith WR (2011) Relationship between SSR-based genetic distance and cotton F hybrid performance for lint yield and fiber properties. Crop Sci 51(6):2362CrossRefGoogle Scholar
  54. Zhai HC, Gong WK, Tan YN et al (2016) Identification of chromosome segment substitution lines of Gossypium barbadense introgressed in G. hirsutum and quantitative trait locus mapping for fiber quality and yield traits. PLoS ONE 11(9):e0159101CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang J (2012) The evaluation and identifying QTL of fiber yield and quality traits of chromosome segment substitution lines (BC5F3, BC5F3:4, BC5F3:5) in upland cotton. Dissertation, Chinese Academy of Agricultural SciencesGoogle Scholar
  56. Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174CrossRefPubMedGoogle Scholar
  57. Zhang ZS, Hu MC, Zhang J et al (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24(1):49–61CrossRefGoogle Scholar
  58. Zhang ZS, Rong JK, Vijay N et al (2011) QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. Theor Appl Genet 123(7):1075–1088CrossRefPubMedGoogle Scholar
  59. Zhang JF, Dan YZ, Liang Y et al (2012) Evaluation of yield and fiber quality traits of chromosome segment substitution lines population (BC5F3 and BC5F3:4) in cotton. J Plant Genet Resour 13(5):773–781Google Scholar
  60. Zhao L, Yu YD, Cai CP et al (2012) Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics 13(1):539CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhou G, Zhu Q, Yang G et al (2014) qEL7.2 is a pleiotropic QTL for kernel number per row, ear length and ear weight in maize 5 (Zea mays L.). Euphytica 203(2):429–436CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
  2. 2.College of Agriculture, The Key Laboratory of Oasis Eco-agriculture of Xingjiang Production and Construction GroupShihezi UniversityShiheziChina

Personalised recommendations