, 214:29 | Cite as

EMS-induced point mutations in ALCATRAZ homoeologs increase silique shatter resistance of oilseed rape (Brassica napus)

  • Janina Braatz
  • Hans-Joachim HarloffEmail author
  • Christian Jung


In Arabidopsis (Arabidopsis thaliana), the transcription factor ALCATRAZ (ALC) is involved in the control of silique tissue identity, ensuring the establishment of a separation layer that contributes to the fragility of the dry fruit. The silique structure is retained in the related crop species oilseed rape (Brassica napus), in which it causes yield losses due to seed shedding. A more robust rapeseed silique through Bnalc loss-of-function mutations was hypothesized. We demonstrated the increased silique shatter resistance of oilseed rape through Cas9-induced targeted Bnalc mutations in a previous work. However, the effect was masked by the high shatter resistance of the transformed cultivar itself. In the present study, we used a rapeseed genotype with low shattering resistance and followed an approach of random mutagenesis. We identified 23 Bnalc mutants by TILLING of an EMS-mutagenized ‘Express’ population. By measuring tensile forces necessary to disrupt mature siliques, we determined a double mutant with significantly increased shatter resistance. This mutant can readily be introduced into breeding programs.


Brassica napus Canola Dehiscence zone Mutants Rapeseed Siliques TILLING 



This study was financed by the Stiftung Schleswig-Holsteinische Landschaft under grant no. 2013/69. We thank Monika Bruisch and Hilke Jensen for technical assistance; Mario Hasler for support on statistical analyses; the Institute of Clinical Molecular Biology in Kiel for Sanger sequencing; the breeding company Norddeutsche Pflanzenzucht Hans-Georg Lembke for supplying seeds from the EMS mutant population.

Supplementary material

10681_2018_2113_MOESM1_ESM.pptx (649 kb)
Supplementary material 1 (PPTX 648 kb)
10681_2018_2113_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (DOCX 36 kb)


  1. Baux A, Colbach N, Pellet D (2011) Crop management for optimal low-linolenic rapeseed oil production—field experiments and modelling. Eur J Agron 35(3):144–153CrossRefGoogle Scholar
  2. Braatz J, Harloff H-J, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2):935–942. CrossRefPubMedGoogle Scholar
  3. Bruce DM, Hobson RN, Morgan CL, Child RD (2001) Threshability of shatter-resistant seed pods in oilseed rape. J Agric Eng Res 80(4):343–350. CrossRefGoogle Scholar
  4. Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao MX, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan GY, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan CC, Tollenaere R, Lu YH, Battail C, Shen JX, Sidebottom CHD, Wang XF, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu ZS, Sun FM, Lim YP, Lyons E, Town CD, Bancroft I, Wang XW, Meng JL, Ma JX, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou YM, Hua W, Sharpe AG, Paterson AH, Guan CY, Wincker P (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345(6199):950–953. CrossRefPubMedGoogle Scholar
  5. Cochran WG (1957) Analysis of covariance—its nature and uses. Biometrics 13(3):261–281. CrossRefGoogle Scholar
  6. Davis RL, Cheng P-F, Lassar AB, Weintraub H (1990) The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60(5):733–746. CrossRefPubMedGoogle Scholar
  7. Dong Y, Wang Y-Z (2015) Seed shattering: from models to crops. Front Plant Sci 6:476. PubMedPubMedCentralGoogle Scholar
  8. Girin T, Stephenson P, Goldsack CMP, Kempin SA, Perez A, Pires N, Sparrow PA, Wood TA, Yanofsky MF, Østergaard L (2010) Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation. Plant J 63(2):329–338. CrossRefPubMedGoogle Scholar
  9. Gulden RH, Shirtliffe SJ, Thomas AG (2003) Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci 51(1):83–86CrossRefGoogle Scholar
  10. Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124(5):957–969. CrossRefPubMedGoogle Scholar
  11. Hua S, Shamsi IH, Guo Y, Pak H, Chen M, Shi C, Meng H, Jiang L (2009) Sequence, expression divergence, and complementation of homologous ALCATRAZ loci in Brassica napus. Planta 230(3):493–503. CrossRefPubMedGoogle Scholar
  12. Hwang SF, Ahmed HU, Zhou Q, Strelkov SE, Gossen BD, Peng G, Turnbull GD (2012) Assessment of the impact of resistant and susceptible canola on Plasmodiophora brassicae inoculum potential. Plant Pathol 61(5):945–952. CrossRefGoogle Scholar
  13. Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15(1):133–138CrossRefPubMedGoogle Scholar
  14. Jørgensen T, Hauser TP, Jørgensen RB (2007) Adventitious presence of other varieties in oilseed rape (Brassica napus) from seed banks and certified seed. Seed Sci Res 17(2):115–125CrossRefGoogle Scholar
  15. Kadkol GP, Macmillan RH, Burrow RP, Halloran GM (1984) Evaluation of Brassica genotypes for resistance to shatter. I. Development of a laboratory test. Euphytica 33(1):63–73. CrossRefGoogle Scholar
  16. Kuai J, Sun Y, Liu T, Zhang P, Zhou M, Wu J, Zhou G (2016) Physiological mechanisms behind differences in pod shattering resistance in rapeseed (Brassica napus L.) varieties. PLoS ONE 11(6):e0157341. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Ostergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116(6):843–853. CrossRefPubMedGoogle Scholar
  18. Liu J, Wang J, Wang H, Wang W, Mei D, Zhou R, Cheng H, Yang J, Raman H, Hu Q (2016) Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Front Plant Sci. Google Scholar
  19. Marchant A, Bennett MJ (1998) The Arabidopsis AUX1 gene: a model system to study mRNA processing in plants. Plant Mol Biol 36(3):463–471CrossRefPubMedGoogle Scholar
  20. Meakin PJ, Roberts JA (1990) Dehiscence of Fruit in Oilseed Rape (Brassica-Napus L).2. The Role of Cell-Wall Degrading Enzymes and Ethylene. J Exp Bot 41(229):1003–1011. CrossRefGoogle Scholar
  21. Ogawa M, Kay P, Wilson S, Swain SM (2009) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21(1):216–233. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pari L, Assirelli A, Suardi A, Civitarese V, Del Giudice A, Costa C, Santangelo E (2012) The harvest of oilseed rape (Brassica napus L.): the effective yield losses at on-farm scale in the Italian area. Biomass Bioenerg 46:453–458CrossRefGoogle Scholar
  23. Price JS, Hobson RN, Neale MA, Bruce DM (1996) Seed losses in commercial harvesting of oilseed rape. J Agr Eng Res 65(3):183–191. CrossRefGoogle Scholar
  24. R Core Team (2015) R: A language and environment for statistical computing, 3.2.0 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  25. Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol 11(24):1914–1922. CrossRefPubMedGoogle Scholar
  26. Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IAP, Batley J, Luckett DJ, Wratten N (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9(7):e101673. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Simmonds J, Scott P, Brinton J, Mestre TC, Bush M, del Blanco A, Dubcovsky J, Uauy C (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet 129(6):1099–1112. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tao Z, Huang Y, Zhang L, Wang X, Liu G, Wang H (2017) BnLATE, a Cys2/His2-type zinc-finger protein, enhances silique shattering resistance by negatively regulating lignin accumulation in the silique walls of Brassica napus. PLoS ONE 12(1):e0168046. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1(5):2465–2477. CrossRefPubMedGoogle Scholar
  30. Voronova A, Baltimore D (1990) Mutations that disrupt DNA binding and dimer formation in the E47 helix-loop-helix protein map to distinct domains. Proc Natl Acad Sci 87(12):4722–4726CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang R, Ripley VL, Rakow G (2007) Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed 126(6):588–595. CrossRefGoogle Scholar
  32. Yuan Y-X, Wu J, Sun R-F, Zhang X-W, Xu D-H, Bonnema G, Wang X-W (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60(4):1299–1308. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zerr T, Henikoff S (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res 33(9):2806–2812. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plant Breeding InstituteChristian-Albrechts-University of KielKielGermany

Personalised recommendations