Advertisement

Euphytica

, 213:179 | Cite as

Promising options for improving performance and proanthocyanidins of the forage legume sainfoin (Onobrychis viciifolia Scop.)

  • Roland Kölliker
  • Katharina Kempf
  • Carsten S. Malisch
  • Andreas Lüscher
Article
Part of the following topical collections:
  1. Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016

Abstract

Sainfoin (Onobrychis viciifolia Scop.) is an underutilized perennial forage legume with high potential as a forage source for ruminants in grassland based livestock production systems. The species is also particularly valued for its content of proanthocyanidins (PA; also known as condensed tannins), which have been shown to improve animal health by reducing bloat, and by diminishing gastro-intestinal parasites, can reduce nitrogen losses through excreted urine and may also have the potential to lower methane emissions. However, sainfoin cultivation is not widespread today, mainly due to the limited availability of high performing cultivars and agronomic constraints such as slow establishment, poor competitive ability and limited yield stability. In this paper, we give an overview on the importance and the potential of sainfoin and review recent findings regarding cultivation practices and the variability observed for agronomic and quality traits. A special focus is placed on the potential and implications for targeted improvement through breeding. Results show that stability of sainfoin yields can be significantly improved when grown in mixtures with appropriate companion species and it was shown that the choice of cultivar, management practices and drought could have an impact on PA content and composition. Various studies demonstrate large variability in agronomic performance, PA concentration and PA composition among and within sainfoin accessions, highlighting the big potential to improve this species by breeding. In addition, we highlight recent advances in breeding research such as high rates of self-fertilization in this generally allogamous species and the development of molecular genetic resources, which build the basis for novel breeding strategies and the targeted exploitation of sainfoin germplasm in the future.

Keywords

Forage legume Condensed tannins Cultivation practices Marker assisted breeding Self-fertilization 

Notes

Acknowledgements

We thank the two anonymous reviewers for their helpful comments, which helped to substantially improve this manuscript. This work was partially supported by a European Union Marie Curie training network grant (“LegumePlus” PITN-GA-2011-289377). We are grateful to Prof. Irene Mueller-Harvey, University of Reading, UK, for initiating and leading LegumePlus and for encouraging us to work on this interesting plant species.

References

  1. Abberton MT, Marshall AH (2010) White clover. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Handbook of plant breeding, vol 5. Springer, New York, pp 457–476. doi: 10.1007/978-1-4419-0760-8 CrossRefGoogle Scholar
  2. Acharya SN (2015) ACC Mountainview sainfoin (Onobrychis viciifolia subsp. Viciifolia). Can J Plant Sci 95:603–607CrossRefGoogle Scholar
  3. Akopian JA (2009) On some wild relatives of cultivated sainfoin (Onobrychis L.) from the flora of Armenia. Crop Wild Relat 7:17–18Google Scholar
  4. Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH (2015) Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci 34:327–380. doi: 10.1080/07352689.2014.898462 CrossRefGoogle Scholar
  5. Aufrere J, Dudilieu M, Andueza D, Poncet C, Baumont R (2013) Mixing sainfoin and lucerne to improve the feed value of legumes fed to sheep by the effect of condensed tannins. Animal 7:82–92. doi: 10.1017/S1751731112001097 PubMedCrossRefGoogle Scholar
  6. Azuhnwi BN, Boller B, Martens M, Dohme-Meier F, Ampuero S, Gunter S, Kreuzer M, Hess HD (2011) Morphology, tannin concentration and forage value of 15 Swiss accessions of sainfoin (Onobrychis viciifolia Scop.) as influenced by harvest time and cultivation site. Grass Forage Sci 66:474–487. doi: 10.1111/j.1365-2494.2011.00811.x CrossRefGoogle Scholar
  7. Azuhnwi BN, Boller B, Dohme-Meier F, Hess HD, Kreuzer M, Stringano E, Mueller-Harvey I (2013a) Exploring variation in proanthocyanidin composition and content of sainfoin (Onobrychis viciifolia). J Sci Food Agric 93:2102–2109. doi: 10.1002/Jsfa.6119 PubMedCrossRefGoogle Scholar
  8. Azuhnwi BN, Hertzberg H, Arrigo Y, Gutzwiller A, Hess HD, Mueller-Harvey I, Torgerson PR, Kreuzer M, Dohme-Meier F (2013b) Investigation of sainfoin (Onobrychis viciifolia) cultivar differences on nitrogen balance and fecal egg count in artificially infected lambs. J Anim Sci 91:2343–2354. doi: 10.2527/Jas2012-5351 PubMedCrossRefGoogle Scholar
  9. Badoux S (1964) Etude des caractères morphologiques, physiologiques et agronomiques de populations d’ esparcette (Onobrychis spp.). PhD thesis Nr. 3583, ETH ZurichGoogle Scholar
  10. Bal MA, Ozturk D, Aydin R, Erol A, Ozkan CO, Ata M, Karakas E, Karabay P (2006) Nutritive value of sainfoin (Onobrychis viciifolia) harvested at different maturity stages. Pak J Biol Sci 9:205–209. doi: 10.3923/pjbs.2006.205.209 CrossRefGoogle Scholar
  11. Barrau E, Fabre N, Fouraste I, Hoste H (2005) Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology 131:531–538. doi: 10.1017/S0031182005008024 PubMedCrossRefGoogle Scholar
  12. Bennett SJ, Francis C, Reid B (2001) Minor and under-utilised legumes. In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the mediterranean. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 219–220Google Scholar
  13. Bhattarai S, Coulman B, Biligetu B (2016) Sainfoin (Onobrychis viciifolia Scop.): renewed interest as a forage legume for western Canada. Can J Plant Sci 96:748–756. doi: 10.1139/cjps-2015-0378 CrossRefGoogle Scholar
  14. Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34:823–829CrossRefGoogle Scholar
  15. Boller B, Posselt UK, Veronesi F (eds) (2010a) Fodder crops and amenity grasses. Handbook of plant breeding, vol 5. Springer, New York. doi: 10.1007/978-1-4419-0760-8
  16. Boller B, Schubiger F, Kölliker R (2010b) Red clover. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Handbook of plant breeding, vol 5. Springer, New York, pp 439–455. doi: 10.1007/978-1-4419-0760-8 CrossRefGoogle Scholar
  17. Borreani G, Peiretti PG, Tabacco E (2003) Evolution of yield and quality of sainfoin (Onobrychis viciifolia Scop.) in the spring growth cycle. Agronomie 23:193–201. doi: 10.1051/Agro2002082 CrossRefGoogle Scholar
  18. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x PubMedCrossRefGoogle Scholar
  19. Broderick GA, Albrecht KA (1997) Ruminal in vitro degradation of protein in tannin-free and tannin-containing forage legume species. Crop Sci 37:1884–1891. doi: 10.2135/cropsci1997.0011183X003700060037x CrossRefGoogle Scholar
  20. Carlier L, Rotar I, Vlahova M, Vidican R (2009) Importance and functions of grasslands. Not Bot Horti Agrobot 37:25Google Scholar
  21. Connolly J, Sebastià L, Kirwan J, Finn M, Llurba M, Suter M et al. (2017) Weed suppression greatly increased by plant diversity in intensively managed grasslands: a continental-scale experiment. J Appl Ecol (in press)Google Scholar
  22. Copani G, Niderkorn V, Anglard F, Quereuil A, Ginane C (2016) Silages containing bioactive forage legumes: a promising protein-rich feed source for growing lambs. Grass Forage Sci 71:622–631. doi: 10.1111/gfs.12225 CrossRefGoogle Scholar
  23. De Vicente M, Arus P (1996) Tetrasomic inheritance of isozymes in sainfoin (Onobrychis viciaefolia Scop.). J Hered 87:54–62. doi: 10.1093/oxfordjournals.jhered.a022953 CrossRefGoogle Scholar
  24. Delgado I, Salvia J, Buil I, Andres C (2008) The agronomic variability of a collection of sainfoin accessions. Span J Agric Res 6:401–407. doi: 10.5424/sjar/2008063-333 CrossRefGoogle Scholar
  25. Demdoum S, Muñoz F, Delgado I, Valderrábano J, Wünsch A (2012) EST-SSR cross-amplification and genetic similarity in Onobrychis genus. Genet Resour Crop Evol 59:253–260. doi: 10.1007/s10722-011-9681-x CrossRefGoogle Scholar
  26. Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28. doi: 10.1111/j.1469-8137.2004.01217.x PubMedCrossRefGoogle Scholar
  27. Do Canto J, Studer B, Lubberstedt T (2016) Overcoming self-incompatibility in grasses: a pathway to hybrid breeding. Theor Appl Genet 129:1815–1829. doi: 10.1007/s00122-016-2775-2 PubMedCrossRefGoogle Scholar
  28. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi: 10.1371/journal.pone.0019379 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Engström MT, Palijarvi M, Fryganas C, Grabber JH, Mueller-Harvey I, Salminen JP (2014) Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J Agric Food Chem 62:3390–3399. doi: 10.1021/jf500745y PubMedCrossRefGoogle Scholar
  30. European Commission (2015) Plant variety catalogues & databases. http://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases/index_en.htm. Accessed 07 June 2017
  31. Fleischmann R (1932) Züchtung von zwei neuen Futterpflanzen für Trockengebiete. Der Züchter 4:219–225Google Scholar
  32. Frame J (2005) Forage legumes for temperate grasslands. Science Publishers Inc, Enfield, USAGoogle Scholar
  33. Frame J, Charlton JFL, Laidlaw AS (1998) Alsike clover and sainfoin. In: Series CP (ed) Temperate forage legume. CAB International, University of Wisconsin, Madison, WI, USA, pp 279–289Google Scholar
  34. Gallais A (2003) Quantitative genetics and breeding methods in autopolyploid plants. INRA, Paris, FranceGoogle Scholar
  35. Girard M, Dohme-Meier F, Wechsler D, Goy D, Kreuzer M, Bee G (2016) Ability of 3 tanniferous forage legumes to modify quality of milk and Gruyère-type cheese. J Dairy Sci 99:205–220. doi: 10.3168/jds.2015-9952 PubMedCrossRefGoogle Scholar
  36. Goplen BP, Richards KW, Moyer JR (1991) Sainfoin for western Canada. Publication 1470/E. Agriculture Canada, Ottawa, CanadaGoogle Scholar
  37. GRIN (2016) https://npgsweb.ars-grin.gov. Accessed 07 June 2017
  38. Grosse Brinkhaus A, Wyss U, Arrigo Y, Girard M, Bee G, Zeitz J, Kreuzer M, Dohme-Meier F (2016) In vitro ruminal fermentation characteristics and utilisable CP supply of sainfoin and birdsfoot trefoil silages and their mixtures with other legumes. Animal: 1–11. doi: 10.1017/S1751731116001816
  39. Häring DA, Suter D, Amrhein N, Lüscher A (2007) Biomass allocation is an important determinant of the tannin concentration in growing plants. Ann Bot 99:111–120. doi: 10.1093/aob/mc1227 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Häring DA, Scharenberg A, Heckendorn F, Dohme F, Lüscher A, Maurer V, Suter D, Hertzberg H (2008) Tanniferous forage plants: agronomic performance, palatability and efficacy against parasitic nematodes in sheep. Renew Agric Food Syst 23:19–29. doi: 10.1017/S1742170507002049 CrossRefGoogle Scholar
  41. Hatew B, Hayot Carbonero C, Strigano E, Sales LF, Smith LMJ, Mueller-Harvey I, Hendriks WH, Pellikaan WF (2015) Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions. Grass Forage Sci 70:474–490. doi: 10.1111/gfs.12125 CrossRefGoogle Scholar
  42. Hayot Carbonero C, Carbonero F, Smith LJ, Brown T (2012) Phylogenetic characterisation of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop. Genet Resour Crop Evol:1–12. doi: 10.1007/s10722-012-9800-3
  43. Heinrichs DH (1970) Flooding tolerance of legumes. Can J Plant Sci 50:435–438CrossRefGoogle Scholar
  44. Hill J (1990) The three C’s—competition, coexistence and coevolution—and their impact on the breeding of forage crop mixtures. Theor Appl Genet 79:168–176. doi: 10.1007/BF00225947 PubMedCrossRefGoogle Scholar
  45. Hoste H, Martinez-Ortiz-De-Montellano C, Manolaraki F, Brunet S, Ojeda-Robertos N, Fourquaux I, Torres-Acosta JF, Sandoval-Castro CA (2012) Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol 186:18–27. doi: 10.1016/j.vetpar.2011.11.042 PubMedCrossRefGoogle Scholar
  46. Humphreys M, Feuerstein U, Vandevalle M, Baert J (2010) Ryegrasses. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Handbook of plant breeding, vol 5. Springer, New York, pp 211–260. doi: 10.1007/978-1-4419-0760-8 CrossRefGoogle Scholar
  47. Irani S, Majidi MM, Mirlohi A, Karami M, Zargar M (2015) Response to drought stress in sainfoin: within and among ecotype variation. Crop Sci 55:1868–1880. doi: 10.2135/cropsci2014.07.0481 CrossRefGoogle Scholar
  48. Kaplan M (2011) Determination of potential nutritive value of sainfoin (onobrychis sativa) hays harvested at flowering stage. J Anim Vet Adv 10:2028–2031. doi: 10.3923/javaa.2011.2028.2031 CrossRefGoogle Scholar
  49. Kempf K, Grieder C, Walter A, Widmer F, Reinhard S, Kölliker R (2015) Evidence and consequences of self-fertilisation in the predominantly outbreeding forage legume Onobrychis viciifolia. BMC Genet 16:117. doi: 10.1186/s12863-015-0275-z PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kempf K, Mora-Ortiz M, Smith LM, Kölliker R, Skøt L (2016) Characterization of novel SSR markers in diverse sainfoin (Onobrychis viciifolia) germplasm. BMC Genet 17:124. doi: 10.1186/s12863-016-0431-0 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kempf K, Malisch CS, Grieder C, Widmer F, Kölliker R (2017) Marker-trait association analysis for agronomic and compositional traits in sainfoin (Onobrychis viciifolia). Genet Mol Res. doi: 10.4238/gmr16019483 PubMedGoogle Scholar
  52. Khalilvandi-Behroozyar H, Dehghan-Banadaky M, Rezayazdi K (2010) Palatability, in situ and in vitro nutritive value of dried sainfoin (Onobrychis viciifolia). J Agric Sci 148:723–733. doi: 10.1017/S0021859610000523 CrossRefGoogle Scholar
  53. Kingston-Smith AH, Edwards JE, Huws SA, Kim EJ, Abberton M (2010) Plant-based strategies towards minimising ‘livestock’s long shadow’. Proc Nutr Soc 69:613–620. doi: 10.1017/S0029665110001953 PubMedCrossRefGoogle Scholar
  54. Knipe WJ, Carleton AE (1972) Estimates of percentage of self-pollination and cross-pollination in Sainfoin (Onobrychis viciifolia Scop). Crop Sci 12:520–522. doi: 10.2135/cropsci1972.0011183X001200040041x CrossRefGoogle Scholar
  55. Knuth P (1906) Handbook of flower pollination, vol 2. Claredon Press, Oxford, UKGoogle Scholar
  56. Koch DW, Hinze GO, Dotzenko AD (1972) Influence of three cutting systems on yield, water use efficiency, and forage quality of sainfoin. Agron J 64:463–467CrossRefGoogle Scholar
  57. Kölliker R, Boller B, Widmer F (2005) Marker assisted polycross breeding to increase diversity and yield in perennial ryegrass (Lolium perenne L.). Euphytica 146:55–65. doi: 10.1007/s10681-005-6036-8 CrossRefGoogle Scholar
  58. Kommuru D, Barker T, Desai S, Burke J, Ramsay A, Mueller-Harvey I, Miller J, Mosjidis J, Kamisetti N, Terrill T (2014) Use of pelleted sericea lespedeza (Lespedeza cuneata) for natural control of coccidia and gastrointestinal nematodes in weaned goats. Vet Parasitol 204:191–198PubMedCrossRefGoogle Scholar
  59. Liu Z, Lane GPF, Davies WP (2008) Establishment and production of common sainfoin (Onobrychis viciifolia Scop.) in the UK. 1. Effects of sowing date and autumn management on establishment and yield. Grass Forage Sci 63:234–241. doi: 10.1111/j.1365-2494.2008.00628.x CrossRefGoogle Scholar
  60. Liu Z, Baines RN, Lane GPF, Davies WP (2010) Survival of plants of common sainfoin (Onobrychis viciifolia Scop.) in competition with two companion grass species. Grass Forage Sci 65:11–14. doi: 10.1111/j.1365-2494.2009.00714.x CrossRefGoogle Scholar
  61. Lüscher A, Jacquard P (1991) Coevolution between interspecific plant competitors? Trends Ecol Evol 6:355–358. doi: 10.1016/0169-5347(91)90225-M CrossRefGoogle Scholar
  62. Lüscher A, Connolly J, Jacquard P (1992) Neighbour specificity between Lolium perenne and Trifolium repens from a natural pasture. Oecologia 91:404–409. doi: 10.1007/BF00317630 PubMedCrossRefGoogle Scholar
  63. Lüscher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL (2014) Potential of legume-based grassland-livestock systems in Europe: a review. Grass Forage Sci 69:206–228. doi: 10.1111/gfs.12124 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Malisch CS, Lüscher A, Baert N, Engström MT, Studer B, Fryganas C, Mueller-Harvey I, Salminen J-P (2015) Large variability of proanthocyanidin content and composition in sainfoin (Onobrychis viciifolia). J Agric Food Chem 63:10234–10242. doi: 10.1021/acs.jafc.5b04946 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Malisch CS, Salminen J-P, Kölliker R, Engström MT, Suter D, Studer B, Lüscher A (2016) Drought effects on proanthocyanidins in sainfoin (Onobrychis viciifolia) are dependent on the plant’s ontogenetic stage. J Agric Food Chem 64:9307–9316. doi: 10.1021/acs.jafc.6b02342 PubMedCrossRefGoogle Scholar
  66. Malisch CS, Suter D, Studer B, Lüscher A (2017) Multifunctional benefits of sainfoin mixtures: effects of partner species, sowing density and cutting regime. Grass Forage Sci. doi: 10.1111/gfs.12278 Google Scholar
  67. McMahon LR, Majak W, McAllister TA, Hall JW, Jones GA, Popp JD, Cheng KJ (1999) Effect of sainfoin on in vitro digestion of fresh alfalfa and bloat in steers. Can J Anim Sci 79:203–212. doi: 10.4141/A98-074 CrossRefGoogle Scholar
  68. Mohajer S, Jafari AA, Taha RM (2011) Studies on seed and forage yield in 10 populations of sainfoin (Onobrychis sativa) grown as spaced plants and swards. J Food Agric Env 9:222–227Google Scholar
  69. Mohajer S, Jafari AA, Taha RM, Yaacob JS, Saleh A (2013) Genetic diversity analysis of agro-morphological and quality traits in populations of sainfoin (Onobrychis sativa). Aust J Crop Sci 7:1024Google Scholar
  70. Mora-Ortiz M, Smith LJM (2016) Sainfoin—surprising science behind a forgotten forage.Grower’s Guide. Cotswold Seeds Ltd., Moreton-in-Marsh, Glucestershire, UKGoogle Scholar
  71. Mora-Ortiz M, Swain MT, Vickers MJ, Hegarty MJ, Kelly R, Smith LMJ, Skøt L (2016) De-novo transcriptome assembly for gene identification, analysis, annotation, and molecular marker discovery in Onobrychis viciifolia. BMC Genom 17:756. doi: 10.1186/s12864-016-3083-6 CrossRefGoogle Scholar
  72. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037. doi: 10.1002/jsfa.2577 CrossRefGoogle Scholar
  73. Novobilsky A, Stringano E, Hayot Carbonero C, Smith LM, Enemark HL, Mueller-Harvey I, Thamsborg SM (2013) In vitro effects of extracts and purified tannins of sainfoin (Onobrychis viciifolia) against two cattle nematodes. Vet Parasitol 196:532–537. doi: 10.1016/j.vetpar.2013.03.024 PubMedCrossRefGoogle Scholar
  74. Nyfeler D, Huguenin-Elie O, Matthias S, Frossard E, Luscher A (2011) Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163. doi: 10.1016/j.agee.2010.11.022 CrossRefGoogle Scholar
  75. Oberson A, Frossard E, Buhlmann C, Mayer J, Mader P, Luscher A (2013) Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371:237–255. doi: 10.1007/s11104-013-1666-4 CrossRefGoogle Scholar
  76. O’Mara FP (2012) The role of grasslands in food security and climate change. Ann Bot 110:1263–1270. doi: 10.1093/aob/mcs209 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Özbek H (2011) Sainfoin, Onobrychis viciifolia Scop.: an important bee plant. Uludag Bee J 11:51–62Google Scholar
  78. Parker RJ, Moss BR (1981) Nutritional-value of sainfoin hay compared with alfalfa hay. J Dairy Sci 64:206–210. doi: 10.3168/jds.S0022-0302(81)82555-6 CrossRefGoogle Scholar
  79. Peralta M, Combes M-C, Cenci A, Lashermes P, Dereeper A (2013) SNiPloid: a utility to exploit high-throughput SNP data derived from RNA-seq in allopolyploid species. Int J Plant Genom 2013:890123. doi: 10.1155/2013/890123 Google Scholar
  80. Piano E, Pecetti L (2010) Minor legume species. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Handbook of plant breeding, vol 5. Springer, New York, pp 477–500. doi: 10.1007/978-1-4419-0760-8 CrossRefGoogle Scholar
  81. Piper C (1914) Forage plants and their culture. The rural text-book series. The Macmillan company, New York, USAGoogle Scholar
  82. Porcher MH (2004) Sorting onobrychis names. Multilingual multiscript plant name database—a work in progress. The University of Melbourne. http://www.plantnames.unimelb.edu.au/Sorting/Onobrychis.html#viciifolia. Accessed 07 June 2017
  83. Posselt U (2010) Breeding methods in cross-pollinated species. In: Boller B, Posselt U, Veronesi F (eds) Fodder crops and amenity grasses. Handbook of plant breeding, vol 5. Springer, New York, pp 39–88. doi: 10.1007/978-1-4419-0760-8 CrossRefGoogle Scholar
  84. Quijada J, Fryganas C, Ropiak HM, Ramsay A, Mueller-Harvey I, Hoste H (2015) Anthelmintic activities against Haemonchus contortus or Trichostrongylus colubriformis from small ruminants are influenced by structural features of condensed tannins. J Agric Food Chem 63:6346–6354PubMedCrossRefGoogle Scholar
  85. Regos I, Urbanella A, Treutter D (2009) Identification and quantification of phenolic compounds from the forage legume sainfoin (Onobrychis viciifolia). J Agric Food Chem 57:5843–5852. doi: 10.1021/Jf900625r PubMedCrossRefGoogle Scholar
  86. Riday H, Krohn AL (2010) Genetic map-based location of the red clover (Trifolium pratense L.) gametophytic self-incompatibility locus. Theor Appl Genet 121:761–767. doi: 10.1007/s00122-010-1347-0 PubMedCrossRefGoogle Scholar
  87. Rumball W, Claydon RB (2005) Germplasm release—’G35’ Sainfoin (Onobrychis viciifolia Scop.). N Z J Agric Res 48:127–128CrossRefGoogle Scholar
  88. Sacristan M (1966) Estudios citotaxonomicos sobre el genero Onobrychis (L) Adanson con referencia especial a la citogenetica de la esparceta (Onobrychis viciifolia Scop.). Anales de la Estacion Experimental de Aula Dei 8:1–115Google Scholar
  89. Sanderson MA, Brink G, Ruth L, Stout R (2012) Grass-legume mixtures suppress weeds during establishment better than monocultures. Agron J 104:36–42. doi: 10.2134/agronj2011.0130 CrossRefGoogle Scholar
  90. Sears RG, Ditterline RL, Mathre DE (1975) Crown and root rotting organisms affecting sainfoin (Onobrychis viciifolia) in Montana. Plant Dis Rep 59:423–426Google Scholar
  91. Sergeeva AG (1955) The effect of lucerne and sainfoin on the water-stable structure of soils under irrigation. Pocvovedenie 12:35–42Google Scholar
  92. Sheehy JE, Popple SC (1981) Photoynthesis, water relations, temperature and canopy structure as factors influencing the growth of sainfoin (Onobrychis viciifolia Scop.) and lucerne (Medicago sativa L.). Ann Bot 48:113–128CrossRefGoogle Scholar
  93. Sölter U, Hopkins A, Sitzia M, Goby JP, Greef JM (2007) Seasonal changes in herbage mass and nutritive value of a range of grazed legume swards under Mediterranean and cool temperate conditions. Grass Forage Sci 62:372–388. doi: 10.1111/j.1365-2494.2007.00592.x CrossRefGoogle Scholar
  94. Sottie ET (2014) Characterization of new sainfoin populations for mixed alfalfa pastures in western canada. PhD thesis, University of LethbridgeGoogle Scholar
  95. Sottie E, Acharya S, McAllister T, Thomas J, Wang Y, Iwaasa A (2014) Alfalfa pasture bloat can be eliminated by intermixing with newly-developed sainfoin population. Agron J 106:1470–1478CrossRefGoogle Scholar
  96. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55. doi: 10.1086/367580 PubMedCrossRefGoogle Scholar
  97. Stringano E, Carbonero CH, Smith LMJ, Brown RH, Mueller-Harvey I (2012) Proanthocyanidin diversity in the EU ‘HealthyHay’ sainfoin (Onobrychis viciifolia) germplasm collection. Phytochemistry 77:197–208. doi: 10.1016/j.phytochem.2012.01.013 PubMedCrossRefGoogle Scholar
  98. Suter M, Connolly J, Finn JA, Loges R, Kirwan L, Sebastia MT, Lüscher A (2015) Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob Change Biol 21:2424–2438. doi: 10.1111/gcb.12880 CrossRefGoogle Scholar
  99. Tasei JN (1984) Légumineuse fourragères et protéagireusses. In: Pessan P, Louveaux J (eds) Pollinisation et productions végétales. INRA, Paris, France, pp 285–287Google Scholar
  100. Taylor NL, Anderson MK (1980) Maintenance of parental lines for hybrid red-clover. Crop Sci 20:367–369CrossRefGoogle Scholar
  101. Thomson JR (1938) Cross- and self-fertility in sainfoin. Ann Appl Biol 25:695–704. doi: 10.1111/j.1744-7348.1938.tb02348.x CrossRefGoogle Scholar
  102. Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147. doi: 10.1007/s10311-006-0068-8 CrossRefGoogle Scholar
  103. Trnka M, Olesen JE, Kersebaum KC, Skjelvåg AO, Eitzinger J, Seguin B et al (2011) Agroclimatic conditions in Europe under climate change. Glob Change Biol 17:2298–2318. doi: 10.1111/j.1365-2486.2011.02396.x CrossRefGoogle Scholar
  104. Turk M, Albayrak S, Tuzun C, Yuksel O (2011) Effects of fertilization and harvesting stages on forage yield and quality of sainfoin (Onobrychis sativa L.). Bulg J Agric Sci 17:789–794Google Scholar
  105. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630. doi: 10.1016/j.tplants.2005.10.004 PubMedCrossRefGoogle Scholar
  106. Veronesi F, Brummer EC, Huyghe C (2010) Alfalfa. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Handbook of plant breeding, vol 5. Springer, New York, pp 395–438. doi: 10.1007/978-1-4419-0760-8 CrossRefGoogle Scholar
  107. Waghorn G (2008) Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim Feed Sci Technol 147:116–139. doi: 10.1016/j.anifeedsci.2007.09.013 CrossRefGoogle Scholar
  108. Wang Y, Berg BP, Barbieri LR, Veira DM, McAllister TA (2006) Comparison of alfalfa and mixed alfalfa-sainfoin pastures for grazing cattle: effects on incidence of bloat, ruminal fermentation, and feed intake. Can J Anim Sci 86:383–392. doi: 10.4141/A06-009 CrossRefGoogle Scholar
  109. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi: 10.1038/nrg2484 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang Y, Majak W, McAllister TA (2012) Frothy bloat in ruminants: cause, occurrence, and mitigation strategies. Anim Feed Sci Technol 172:103–114. doi: 10.1016/j.anifeedsci.2011.12.012 CrossRefGoogle Scholar
  111. Wilman D, Asiedu FHK (1983) Growth, nutritive-value and selection by sheep of sainfoin, red-clover, lucerne and hybrid ryegrass. J Agric Sci 100:115–126CrossRefGoogle Scholar
  112. Woodgate K, Maxted N, Bennett SJ (1999) A generic conspectus of the forage legumes of the Mediterranean basin. In: Bennett SJ, Cocks PS (eds) Genetic resources of mediterranean pasture and forage legumes. Springer, Dordrecht, Germany, p 204Google Scholar
  113. Zarrabian M, Majidi MM, Ehtemam MH (2013) Genetic diversity in a worldwide collection of sainfoin using morphological, anatomical, and molecular markers. Crop Sci 53:2483–2496. doi: 10.2135/cropsci2013.03.0130 CrossRefGoogle Scholar
  114. Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DF (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–111. doi: 10.1038/nature13869 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Molecular Plant Breeding, Institute of Agricultural SciencesETH ZürichZurichSwitzerland
  2. 2.Molecular EcologyAgroscopeZurichSwitzerland
  3. 3.Forage Production and Grassland SystemsAgroscopeZurichSwitzerland
  4. 4.Grass and Forage ScienceChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations