, 213:171 | Cite as

Perennial wheat lines have highly admixed population structure and elevated rates of outcrossing

  • J. Piaskowski
  • Kevin Murphy
  • Theodore Kisha
  • Stephen Jones


Perennial wheat has been proposed to alleviate long standing issues with soil erosion in annual cropping systems, while supporting rural communities and providing grain farmers with a marketable climate-resilient crop. The Washington State University perennial wheat breeding program has created several hundred interspecific progeny by crossing several different cultivars of winter wheat (Triticum aestivum L.) with Thinopyrum species and × Agrotriticum spp. Prior to the chromosome composition of these wheat-wheatgrass derivatives was not characterized, limiting their utility as stable breeding germplasm. We determined the mitotic chromosome number and species origin of chromosomes for eight breeding lines, and estimated their relatedness and population structure using AFLPs. Additionally, self-pollination and outcrossing rates were estimated for these breeding lines to gain an understanding of perennial wheat’s reproductive strategy. We intercrossed the lines with each other to produce 20 families and then measured the level of chromosome pairing during meiosis I in the F1 progeny. The lines contained between 44 and 64 chromosomes, of which eight to 16 were from Th. ponticum. Our analysis of molecular diversity indicated greater genetic diversity within, rather than across, breeding lines (88 and 12%, respectively). The outcrossing rate was estimated at 16%. Understanding chromosome number and origin is necessary for developing a population of breeding lines that can be used as parents. Our results suggest that the perennial wheat breeding lines act as a single diverse population that can be improved using breeding strategies for inbred and outcrossing crops.


Cytogenetics Dryland agriculture Perennial wheat Population genetics Wheat 



The authors gratefully acknowledge the help of Lisa Taylor and Kerry Balow in completing the AFLPs and greenhouse work, respectively. We also thank Linda R. Klein for writing advice and editing the manuscript. This work was supported in part by Washington State University, The Land Institute (Salina, KS), a USDA-CSREES (Cooperative Research and Extension Services) Special Research Grant (WF-2006-06141), and the Washington Grain Commission.

Supplementary material

10681_2017_1961_MOESM1_ESM.docx (778 kb)
Supplementary material 1 (DOCX 778 kb). A supplementary file containing additional tables and figures has been provided: (1) photo of hybrid progeny meiotic cell; (2) photo of somatic chromosomes from a perennial wheat/Th. ponticum F1 progeny mitotic cell; (3) photo of regrowth from perennial wheat line/Th. ponticum cross progeny; (4) summary of cross families between the perennial wheat lines; (5) primer sequences for the selective amplification; (6) distribution of unpaired chromosomes from the inter-hybrid progeny; and (7) regrowth results and cytogenetic and morphological characterization of perennial wheat/Th. ponticum progeny


  1. Allan RE, Peterson CJ, Rubenthaler GL et al (1989) Registration of “Madsen” wheat. Crop Sci 29:1575–1576CrossRefGoogle Scholar
  2. Allard RW (1999) Principles of plant breeding, 2nd edn. John Wiley & Sons Inc, New YorkGoogle Scholar
  3. Arterburn M, Kleinhofs A, Murray T, Jones S (2011) Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploid genus Thinopyrum. Hereditas 148:8–27. doi: 10.1111/j.1601-5223.2010.02084.x CrossRefPubMedGoogle Scholar
  4. Asay KH (1992) Breeding potentials in perennial Triticeae grasses. Hereditas 116:167–173. doi: 10.1111/j.1601-5223.1992.tb00223.x CrossRefGoogle Scholar
  5. Banks PM, Xu SJ, Wang RR-C, Larkin PJ (1993) Varying chromosome composition of 56-chromosome wheat x Thinopyrum intermedium partial amphiploids. Genome 36:207–215CrossRefPubMedGoogle Scholar
  6. Barkworth ME, Dewey DR (1985) Genomically based genera in the perennial Triticeae of North America: identification and membership. Am J Bot 72:767–776CrossRefGoogle Scholar
  7. Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271CrossRefGoogle Scholar
  8. Baumann U, Juttner J, Bian X, Langridge P (2000) Self-incompatibility in the grasses. Ann Bot 85:203–209CrossRefGoogle Scholar
  9. Bell LW, Wade LJ, Ewing MA (2010) Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci 61:679–690CrossRefGoogle Scholar
  10. Brasileiro-Vidal AC, Brammer S, Puertas MJ et al (2005) Mitotic instability in wheat x Thinopyrum ponticum derivatives revealed by chromosome counting, nuclear DNA content and histone H3 phosphorylation pattern. Plant Cell Rep 24:172–178CrossRefPubMedGoogle Scholar
  11. Brown J, Caligari P (2008) An Introduction to Plant Breeding. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  12. Busacca AJ, McCool DK, Papendick RI, Young DL (1985) Dynamic impacts of erosion processes on the productivity of soils in the Palouse. National Symposium on Erosion and Soil Productivity. American Society of Agricultural Engineers, St. Joseph, pp 152–169Google Scholar
  13. Cai X, Jones SS (1997) Direct evidence for high level of autosyndetic pairing in hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum. Theor Appl Genet 95:568–572CrossRefGoogle Scholar
  14. Cai Q, Guy C, Moore G (1996) Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of citrus. Genome 39:235–242CrossRefPubMedGoogle Scholar
  15. Cai X, Jones SS, Murray TD (2001) Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat-Thinopyrum amphiploids. Plant Breed 120:21–26CrossRefGoogle Scholar
  16. Ceoloni C, Kuzmanovic L, Forte P et al (2015) Wheat-perennial triticeae introgressions: major achievements and prospects. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat: cytogenetics, molecular biology, and genomics. Springer International Publishing, Cham, pp 273–313Google Scholar
  17. Charlesworth D, Vekemans X, Castric V, Glémin S (2005) Plant self-incompatibility systems: a molecular evolutionary perspective. New Phytol 168:61–69. doi: 10.1111/j.1469-8137.2005.01443.x CrossRefPubMedGoogle Scholar
  18. Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe – A landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–359CrossRefPubMedGoogle Scholar
  19. Chen Q, Conner RL, Laroche A (1995) Identification of the parental chromosomes of the wheat-alien amphiploid Agrotana by genomic in situ hybridization. Genome 38:1163–1169CrossRefPubMedGoogle Scholar
  20. Chen Q, Conner RL, Laroche A et al (1999) Genomic origins of Thinopyrum chromosome specifying resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Genome 42:289–295CrossRefGoogle Scholar
  21. Chybicki IJ, Oleksa A, Burczyk J (2011) Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 107:589–600. doi: 10.1038/hdy.2011.51 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cox TS, Bender M, Picone C et al (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–71CrossRefGoogle Scholar
  23. Cox T, DeHaan L, Van Tassel D, Cox C (2010) Progress in breeding perennial grains. Crop Pasture Sci 61:513–521CrossRefGoogle Scholar
  24. Crews ET, Rumsey EB (2017) What agriculture can learn from native ecosystems in building soil organic matter: a review. Sustainability. doi: 10.3390/su9040578 Google Scholar
  25. Crews TE, Blesh J, Culman SW et al (2016) Going where no grains have gone before: from early to mid-succession. Agric Ecosyst Environ 223:223–238. doi: 10.1016/j.agee.2016.03.012 CrossRefGoogle Scholar
  26. Curwen-McAdams C, Arterburn M, Murphy K et al (2017) Toward a taxonomic definition of perennial wheat: a new species × Tritipyrum aaseae described. Genet Resour Crop Evol. doi: 10.1007/s10722-016-0463-3 Google Scholar
  27. Dewey DR (1976) Derivation of a new forage grass from Agropyron repensAgropyron spicatum Hybrids1. Crop Sci 16:175–180. doi: 10.2135/cropsci1976.0011183X001600020003x CrossRefGoogle Scholar
  28. Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Publisher, New York, pp 209–279CrossRefGoogle Scholar
  29. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349CrossRefPubMedPubMedCentralGoogle Scholar
  30. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  31. Fedak G, Han F (2005) Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 109:360–367CrossRefPubMedGoogle Scholar
  32. Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87CrossRefGoogle Scholar
  33. Gazza L, Galassi E, Ciccoritti R et al (2016) Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet Resour Crop Evol 63:209–219. doi: 10.1007/s10722-015-0240-8 CrossRefGoogle Scholar
  34. Gill B, Friebe B, Raupp W et al (2006) Wheat genetics resource center: the first 25 years. Adv Agron 89:73–136. doi: 10.1016/S0065-2113(05)89002-9 CrossRefGoogle Scholar
  35. Glover JD, Reganold JP, Bell LW et al (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639. doi: 10.1126/science.1188761 CrossRefPubMedGoogle Scholar
  36. Han G, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids in wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076CrossRefPubMedGoogle Scholar
  37. Hang A, Bockelman H, Burton C (2005) [Poster] Cytological and seed morphological investigation of 250 accession from the W.J. Sando CollectionGoogle Scholar
  38. Hao M, Luo J, Zhang L et al (2013) In situ hybridization analysis indicates that 4AL–5AL–7BS translocation preceded subspecies differentiation of Triticum turgidum. Genome 56:303–305. doi: 10.1139/gen-2013-0049 CrossRefPubMedGoogle Scholar
  39. Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588. doi: 10.1046/j.1365-294X.2003.01835.x CrossRefPubMedGoogle Scholar
  40. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi: 10.1046/j.1471-8286.2002.00305.x CrossRefGoogle Scholar
  41. Hayes RC, Newell MT, DeHaan LR et al (2012) Perennial cereal crops: an initial evaluation of wheat derivatives. Field Crops Res 133:68–89. doi: 10.1016/j.fcr.2012.03.014 CrossRefGoogle Scholar
  42. Jaikumar N, Snapp S, Murphy K, Jones S (2012) Agronomic assessment of perennial wheat and perennial rye as cereal crops. Agron J 104:1716–1726CrossRefGoogle Scholar
  43. Jain S (1961) The composite cross bulk population method. Euphytica 10:315–324CrossRefGoogle Scholar
  44. Jauhar PP (1995) Meiosis and fertility of F1 hybrids between hexaploid bread wheat and decaploid tall wheatgrass (Thinopyrum ponticum). Theor Appl Genet 90:865–871PubMedGoogle Scholar
  45. Johnson R, Kisha T, Evans M (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736CrossRefGoogle Scholar
  46. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi: 10.1093/bioinformatics/btn129 CrossRefPubMedGoogle Scholar
  47. Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. doi: 10.1093/bioinformatics/btr521 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kamvar Z, Tabima J, Grünwald N (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproductionGoogle Scholar
  49. Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. In: Beckman JS, Osborn TC (eds) Plant genomes: methods for genetics and physical mapping. Kluwer, Dordrecht, pp 1–13Google Scholar
  50. Klaas M, Yang B, Bosch M et al (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot 108:677–685. doi: 10.1093/aob/mcr186 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Knowles RP (1990) Registration of “Kirk” crested wheatgrass. Crop Sci 30:749. doi: 10.2135/cropsci1990.0011183X003000030069x CrossRefGoogle Scholar
  52. Lammer D, Cai X, Arterburn M et al (2004) A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot 55:1715–1720CrossRefPubMedGoogle Scholar
  53. Li W, Challa GS, Zhu H, Wei W (2016) Recurrence of Chromosome Rearrangements and Reuse of DNA Breakpoints in the Evolution of the Triticeae Genomes. G3 6:3837–3847. doi: 10.1534/g3.116.035089 PubMedPubMedCentralGoogle Scholar
  54. Liu F, Zhang L, Charlesworth D (1998) Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc Biol Sci 265:293–301. doi: 10.1098/rspb.1998.0295 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Löve Á (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521Google Scholar
  56. Luo MC, Deal KR, Akhunov ED et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci 106:15780–15785. doi: 10.1073/pnas.0908195106 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mable BK, Adam A (2007) Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol Ecol 16:3565–3580. doi: 10.1111/j.1365-294X.2007.03416.x CrossRefPubMedGoogle Scholar
  58. Maestra B, Naranjo T (1999) Structural chromosome differentiation between Triticum timopheevii and T. turgidum and T. aestivum. Theor Appl Genet 98:744–750. doi: 10.1007/s001220051130 CrossRefGoogle Scholar
  59. Manifesto MM, Schlatter AR, Hopp HE et al (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690CrossRefGoogle Scholar
  60. Martinez-Perez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207. doi: 10.1038/35075597 CrossRefPubMedGoogle Scholar
  61. McCool DK, Busacca AJ (1999) Measuring and modeling soil erosion and erosion damages. In: Michalson EL, Papendick RI, Carlson JE (eds) Conservation farming in the United States: methods and accomplishments of the STEEP program. CRC Press, New York, pp 23–56Google Scholar
  62. Moustakas M (1993) Genome relationships between octoploid and decaploid Thinopyrum ponticum. Bot J Linn Soceity 112:149–157CrossRefGoogle Scholar
  63. Murashige T, Skoog F (1962) A revised medium for a rapid growth and bioassay with tobacco tissue culture. Physiol Plants 15:473–479CrossRefGoogle Scholar
  64. Murphy KD, Lammer D, Lyon S et al (2005) Breeding for organic and low-input farming systems: an evolutionary-participatory breeding method for inbred cereal grains. Renew Agric Food Syst 20:45–55CrossRefGoogle Scholar
  65. Murphy KM, Hoagland LA, Reeves PG et al (2009) Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renew Agric Food Syst 24:285–292. doi: 10.1017/S1742170509990159 CrossRefGoogle Scholar
  66. Murphy K, Lyon S, Balow K, Jones S (2010) Post-sexual cycle regrowth and grain yield of Thinopyrum elongatum x Triticum aestivum amphiploids. Plant Breed 129:480–483Google Scholar
  67. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  68. Oliver RE, Cai X, Wang R-C et al (2007) Resistance to tan spot and Stagonospora nodorum blotch in wheat-alien species derivatives. Plant Dis 92:150–157. doi: 10.1094/PDIS-92-1-0150
  69. Papendick RI, Young DL, McCool DK, Krauss HA (1985) Regional Effects of soil erosion on crop productivity - the Palouse are of the Pacific Northwest. In: Follett RA, Stewart BA (eds) Soil Erosion and Crop Productivity. American Society of Agronomy, Madison, pp 305–320Google Scholar
  70. Peterson CJ, Allan RE, Rubenthaler GL, Line RF (1991) Registration of “Eltan” wheat. Crop Sci 31:1704Google Scholar
  71. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715. doi: 10.1038/182713a0 CrossRefGoogle Scholar
  72. R Development Core Team (2011) R: A language and environment for statistical computing.
  73. Scheinost PL, Lammer D, Cai X et al (2001) Perennial wheat: a sustainable cropping system for the Pacific Northwest. Am J Altern Agric 16:146–150CrossRefGoogle Scholar
  74. Schillinger WF, Papendick RI, Guy SO, et al (2006) Dryland cropping in the western United States. In: Peterson GA, Unger PW, Payne WA (eds) Dryland agriculture, 2nd ed. Agronomy Monograph no 23. ASA, CSSA, SSSA, Madison, WI, pp 365–393Google Scholar
  75. Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  76. Sharma HC (1995) How wide can a wide cross be? Euphytica 82:43–64Google Scholar
  77. Sharma HC, Gill BS (1983a) New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. Theor Appl Genet 66:111–121CrossRefPubMedGoogle Scholar
  78. Sharma HC, Gill BS (1983b) Current status of wide hybridization in wheat. Euphytica 32:17–31CrossRefGoogle Scholar
  79. Smith DC (1942) Intergeneric hybridization of cereals and other grasses. J Agric Res 64:33–47Google Scholar
  80. Vos P, Hoger R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang A, Lu B (2014) Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J Syst Evol 52:697–705. doi: 10.1111/jse.12084 CrossRefGoogle Scholar
  82. Wang R-C, Larson S, Jensen S et al (2015) Genome evolution of intermediate wheatgrass. Genome 58:1–8CrossRefGoogle Scholar
  83. Williams EG, Maheswaran G, Hutchinson JF (1987) Embryo and ovule culture in crop improvement. Plant Breed Rev 5:181–236Google Scholar
  84. Wulff BBH, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692. doi: 10.3389/fpls.2014.00692 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Xu J, Conner RL, Laroche A (1994) C-banding and fluorescence in situ hybridization studies of the wheat-alien hybrid “Agrotana”. Genome 37:477–481CrossRefPubMedGoogle Scholar
  86. Zadoks JC, Chang T, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  87. Zhang X, Sallam A, Gao L et al (2016) Establishment and optimization of genomic selection to accelerate the domestication and of intermediate wheatgrass. Plant Genome. doi: 10.3835/plantgenome2015.07.0059 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of HorticultureWashington State UniversityPullmanUSA
  2. 2.Department of Crop & Soil SciencesWashington State UniversityPullmanUSA
  3. 3.Western Plant Introduction StationUSDA-ARSPullmanUSA
  4. 4.BurlingtonUSA

Personalised recommendations