Advertisement

Euphytica

, 213:149 | Cite as

Interspecific hybridization in Sarcococca supported by analysis of ploidy level, genome size and genetic relationships

  • Hanne DenaeghelEmail author
  • Katrijn Van Laere
  • Leen Leus
  • Johan Van Huylenbroeck
  • Marie-Christine Van Labeke
Article

Abstract

Knowledge of ploidy level differences, genome size and genetic relationships between species facilitates interspecific hybridization in ornamentals. For Sarcococca (Buxaceae) only limited (cyto)genetic information is available. The aim of this study was to determine the genome size and chromosome number and to unravel the genetic relationships of a breeder’s collection using AFLP marker analysis. Based on these results, interspecific crosses were made and the efficiency and hybrid status was verified. Two groups of diploid plants (2n = 2x = 24) were observed, with either a genome size of 4.11–4.20 or 7.25–9.63 pg/2C. All the tetraploid genotypes (2n = 4x = 48) had genome sizes ranging from 7.91 to 8.18 pg/2C. In crosses between parents with equal ploidy level and genome size a higher crossing efficiency (on average 58% of the hybridizations resulting in fruits) and more true hybrids (on average 96% of the offspring) were obtained compared to crosses between plants with different genome size and ploidy level (on average 23% fruits and 24% hybrids, respectively). In none of the cross combinations, the ploidy level or genome size was found to be a complete hybridization barrier, although unilateral incongruity was found in some cross combinations. Distant genetic relationships did not hamper the hybridization within Sarcococca genotypes. Our findings will contribute to a more efficient breeding program and a faster achievement of hybrids with an added value.

Keywords

Flow cytometry Ornamental breeding Chromosome counts Buxaceae 

Notes

Acknowledgements

The authors wish to thank the ILVO technical staff for their support and skillful assistance, several interns for their time and patience while making chromosome counts, Ellen Dekeyser for her assistance in analyzing the AFLP results and BEST-Select CVBA (Belgium) for financial support.

References

  1. Aleza P, Juarez J, Ollitrault P, Navarro L (2009) Production of tetraploid plants of non-apomictic citrus genotypes. Plant Cell Rep 28:1837–1846. doi: 10.1007/s00299-009-0783-2 CrossRefPubMedGoogle Scholar
  2. Allum JF, Bringloe DH, Roberts AV (2007) Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984CrossRefPubMedGoogle Scholar
  3. Bean WJ, Murray J (1989) Trees and shurbs hardy in the British Isles, vol IV: Ri-Z. Butler & Tanner ltd., LondonGoogle Scholar
  4. Bennett MD (1972) Nuclear DNA Content and Minimum Generation Time in Herbaceous Plants. Proc R Soc Ser B 181:109. doi: 10.1098/rspb.1972.0042 CrossRefGoogle Scholar
  5. Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245CrossRefPubMedPubMedCentralGoogle Scholar
  6. Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. The University Press, AberdeenGoogle Scholar
  7. De Cock K, Scariot V, Leus L, De Riek J, Van Huylenbroeck J (2007) Understanding genetic relationships in wild and cultivated roses and the use of species in breeding CAB reviews: perspectives in agriculture, veterinary science. Nutr Nat Resour 2:10Google Scholar
  8. Dhooghe E (2009) Morphological and cytogenic study of ornamental ranuculaceae to obtain intergeneric crosses. Ghent University, GhentGoogle Scholar
  9. Dirr M (2011) Dirr’s encyclopedia of trees and shubs. Timber Press, PortlandGoogle Scholar
  10. Dolezel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:12CrossRefGoogle Scholar
  11. Dolezel J, Greilhuber J, Lucretti S, Mesiter A, Lysak MA, Bardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot 82:7CrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:5Google Scholar
  13. Eeckhaut T (2003) Ploidy breeding and interspecific hybridization in Spathiphyllum and woody ornamentals. University of Ghent, GhentGoogle Scholar
  14. Endress PK, Igersheim A (1999) Gynoecium diversity and systematics of the basal eudicots. Bot J Linn Soc 130:305–393. doi: 10.1006/bojl.1999.0255 CrossRefGoogle Scholar
  15. Flora of China (2008) Flora of China: Sarcococca. In: Flora of ChinaGoogle Scholar
  16. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:3CrossRefGoogle Scholar
  17. Garden H (1991) The Hillier manual of trees and shrubs, 6th edn. Redwood Press Ltd, MelkshamGoogle Scholar
  18. Granados Mendoza C, Wanke S, Goetghebeur P, Samain MS (2013) Facilitating wide hybridization in Hydrangea s. l. cultivars: a phylogenetic and marker-assisted breeding approach. Mol Breed 32:233–239. doi: 10.1007/s11032-012-9822-8 CrossRefGoogle Scholar
  19. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifing its existence. Ann Bot 95:91–98. doi: 10.1093/aob/mci004 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Greilhuber J, Dolezel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260. doi: 10.1093/aob/mci019 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hoffman MHA, en Ravesloot MBM (2002) Winterhardheid van boomkwekerijgewassen. PPO rapport 91Google Scholar
  22. Jarvis CE (1989) A review of the family Buxaceae Dumortier, vol I. In: Evolution, systematics and fossil hystory of the Hamamelidae. Science Publications, OxfordGoogle Scholar
  23. Kardos JH, Robacker CD, Dirr M, Rinehart TA (2009) Production and verification of Hydrangea macrophylla × H. angustipetala hybrids. Hortic Sci 44:4Google Scholar
  24. Kirov I, Divashuk M, Van Laere K, Soloviev A, Khrustaleva L (2014) An easy "SteamDrop" method for high quality plant chromosome preparation. Mol Cytogenet 7(1):21CrossRefPubMedPubMedCentralGoogle Scholar
  25. Köhler E (2007) Buxaceae. In: Kubitski K (ed) The families and genera of vascular plants, flowering plants, eudicots, vol IX. Springer, Berlin, pp 40–47Google Scholar
  26. Köhler C, Scheid OM, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148. doi: 10.1016/j.tig.2009.12.006 CrossRefPubMedGoogle Scholar
  27. Krüsmann G (1960) Handbüch der Laubgehölze in zwei Bänden. In: Handbüch der Laubgehölze in zwei Bänden, vol Bänd II: Hemipetalia bis Zizyphus. Paul Pary in Berlin and Hamburg, BerlingGoogle Scholar
  28. Kubota S, Konno I, Kanno A (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet 124:345–354. doi: 10.1007/s00122-011-1709-2 CrossRefPubMedGoogle Scholar
  29. Kuligowska K, Lutken H, Muller R (2016) Towards development of new ornamental plants: status and progress in wide hybridization. Planta 243:17Google Scholar
  30. Lin BY (1984) Ploidy barrier to endosperm development in maize. Genetics 107:103–115PubMedPubMedCentralGoogle Scholar
  31. Lutken H, Clarke JL, Muller R (2012) Genetic engineering and sustainable production of ornamentals: current status and future directions. Plant Cell Rep 31:1141–1157. doi: 10.1007/s00299-012-1265-5 CrossRefPubMedGoogle Scholar
  32. Lysak MA, Dolezel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:10Google Scholar
  33. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117. doi: 10.1016/j.tplants.2007.02.001 CrossRefPubMedGoogle Scholar
  34. Otto F (1990) Chapter 11 DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol 33:105–110. doi: 10.1016/s0091-679x(08)60516-6 CrossRefPubMedGoogle Scholar
  35. R Core Team (2015) R: a language and environment for statistical computing, R version 3.2.0 (2015-04-16)—full of ingredients edn. ViennaGoogle Scholar
  36. Reeves A, Tear J (2000) MicroMeasure for Windows, 3.3 ednGoogle Scholar
  37. Sealy JR (1986) A revision of the genus Sarcococca (Buxaceae). Bot J Linn Soc 92:43CrossRefGoogle Scholar
  38. Sutherland BL, Galloway LF (2017) Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytol 213:404–412. doi: 10.1111/nph.14116 CrossRefPubMedGoogle Scholar
  39. Van Laere K (2008) Interspecific hybridisation within woody ornamentals. University Ghent, GhentGoogle Scholar
  40. Van Laere K, Leus L, Van Huylenbroeck J, Van Bockstaele E (2008) Interspecific hybridisation and genome size analysis in Buddleja. Euphytica 166:445–456. doi: 10.1007/s10681-008-9844-9 CrossRefGoogle Scholar
  41. Van Laere K, Hermans D, Leus L, Van Huylenbroeck J (2011) Genetic relationships in European and Asiatic Buxus species based on AFLP markers, genome sizes and chromosome numbers. Plant Syst Evol 293:1–11. doi: 10.1007/s00606-011-0422-6 CrossRefGoogle Scholar
  42. Van Laere K, Hermans D, Leus L, Van Huylenbroeck J (2015) Interspecific hybridisation within Buxus spp. Sci Hortic 185:139–144. doi: 10.1016/j.scienta.2015.01.030 CrossRefGoogle Scholar
  43. Van Trier H, Hermans D (2005) Buxus. Stichting kunstboek, OostkampGoogle Scholar
  44. Von Balthazar M, Endress PK (2002) Reproductive structures and systematics of Buxaceae. Bot J Linn Soc 140:36Google Scholar
  45. Xie W-J, Leus L, Wang J-H, Van Laere K (2017) Fertility barriers in interspecific crosses within Viburnum. Euphytica 2013:18Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Plant Sciences Unit, Applied Genetics and BreedingMelleBelgium
  2. 2.Department of Plant Production, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations