, 213:120 | Cite as

Genetic diversity of flax accessions originating in the Alpine region: a case study for an ex situ germplasm evaluation based on molecular marker

  • Eva-Maria Halbauer
  • Valentina Bohinec
  • Melanie Wittenberger
  • Karin Hansel-Hohl
  • Stephan Gaubitzer
  • Eva M. Sehr
Part of the following topical collections:
  1. Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016


Agro-biodiversity is currently experiencing severe genetic erosion due to mankind’s unsustainable activities. Because of initiatives following the goal of the conservation of biological diversity, so far seven million crop accessions are being conserved ex situ in gene banks worldwide. Many of these accessions are landraces being rich in gene diversity, silently awaiting their proper characterisation. This is a very critical part of any long-term strategy to enhance the productivity and resilience of crops and agricultural systems and—most importantly—to ensure the preservation of our cultural and biological heritage. In this study of an ex situ germplasm evaluation we analysed 27 flax (Linum usitatissimum L.) accessions originating in the Alpine region, provided by five local gene banks/providers. Based on genomic microsatellite markers (gSSRs), a varying extent of accession-specific gene diversity (expected heterozygosity, HE) was revealed ranging from 0.05 to 0.51. Admixture of individuals between accessions was uncovered, pointing towards past processes related to gene bank management activities (e.g. intentional selection, unintentional cross-pollination during regeneration) or towards the evolution of the landrace itself (e.g. same regional origin, traditional naming), highlighting the co-existence of cultural and biological diversity. Such an genetic analysis of accessions stored ex situ not only produces valuable agronomic and breeding data, but also is useful for the clarification of past processes leading to duplicates within and between collections or mislabelling, contributing to the potential for rationalisation of collections, which in turn can help ensure that the limited resources available for regeneration are used most efficiently and effectively.


Germplasm Characterisation Case study Genetic diversity Flax Linum usitatissimum L. 



We thank the gene bank of the Austrian Agency for Health and Food Safety (AGES), the Tyrolian gene bank, the gene bank of the Arche Noah association, the gene bank Agroscope Changins, and the private farm Gut Neuhof, Obersiebenbrunn, Austria, for providing seeds. The project was financially supported by the AIT Austrian Institute of Technology GmbH and the FEMtech programme of the Austrian Research Promotion Agency (FFG).

Supplementary material

10681_2017_1906_MOESM1_ESM.pdf (212 kb)
Supplementary material 1 (PDF 212 kb)


  1. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631. doi: 10.1007/s00299-008-0507-z CrossRefPubMedGoogle Scholar
  2. Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program structure. Mol Ecol Resour 8:1219–1229. doi: 10.1111/j.1755-0998.2008.02355.x CrossRefPubMedGoogle Scholar
  3. Berg T (2009) Landraces and folk varieties: a conceptual reappraisal of terminology. Euphytica 166:423–430. doi: 10.1007/s10681-008-9829-8 CrossRefGoogle Scholar
  4. Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963. doi: 10.1038/ng.911 CrossRefPubMedGoogle Scholar
  5. Choudhary SB, Sharma HK, Kumar AA et al (2017) SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions. C R Biol 340:65–75. doi: 10.1016/j.crvi.2016.12.002 CrossRefPubMedGoogle Scholar
  6. Cloutier S, Miranda E, Ward K et al (2012a) Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet 125:685–694. doi: 10.1007/s00122-012-1860-4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cloutier S, Ragupathy R, Miranda E et al (2012b) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795. doi: 10.1007/s00122-012-1953-0 CrossRefPubMedPubMedCentralGoogle Scholar
  8. de Vicente M (2005) Gene flow and germplasm management. In: Topical reviews in agricultural biodiversity. International Plant Genetic Resources Institute, RomeGoogle Scholar
  9. De Wit P, Pespeni MH, Ladner JT et al (2012) The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12:1058–1067. doi: 10.1111/1755-0998.12003 CrossRefPubMedGoogle Scholar
  10. DeFaveri J, Viitaniemi H, Leder E, Merilä J (2013) Characterizing genic and nongenic molecular markers: comparison of microsatellites and SNPs. Mol Ecol Resour 13:377–392. doi: 10.1111/1755-0998.12071 CrossRefPubMedGoogle Scholar
  11. Diederichsen A (2007) Ex situ collections of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L. Genet Resour Crop Evol 54:661–678. doi: 10.1007/s10722-006-9119-z CrossRefGoogle Scholar
  12. European Commission (2016) Common catalogue of varieties of agricultural plant species—35th complete edition. OJ C 478, 21.12.2016, pp 1–794Google Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  14. Excoffier L, Lischer HEL (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol. doi: 10.1111/j.1755-0998.2010.02847.x Google Scholar
  15. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47Google Scholar
  16. FAO (2011) Second global plan of action for plant genetic resources for food and agriculture. FAO, Rome, p 96Google Scholar
  17. Flint-Garcia SA (2013) Genetics and consequences of crop domestication. J Agric Food Chem 61:8267–8276. doi: 10.1021/jf305511d CrossRefPubMedGoogle Scholar
  18. Francis RM (2016) Pophelper: an r package and web app to analyse and visualize population structure. Mol Ecol Resour. doi: 10.1111/1755-0998.12509 PubMedGoogle Scholar
  19. Fu Y-B (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128:2131–2142. doi: 10.1007/s00122-015-2585-y CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fu Y-B, Diederichsen A, Richards KW, Peterson G (2002) Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDs. Genet Resour Crop Evol 49:167–174. doi: 10.1023/A:1014716031095 CrossRefGoogle Scholar
  21. Fu Y-B, Diederichsen A, Allaby RG (2012) Locus-specific view of flax domestication history. Ecol Evol 2:139–152. doi: 10.1002/ece3.57 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654. doi: 10.1007/s10531-010-9919-5 CrossRefGoogle Scholar
  23. Gepts P (2003) Crop domestication as a long-term selection experiment. In: Plant breeding reviews. Wiley, New York, pp 1–44Google Scholar
  24. Goldberg CS, Waits LP (2010) Quantification and reduction of bias from sampling larvae to infer population and landscape genetic structure. Mol Ecol Resour 10:304–313. doi: 10.1111/j.1755-0998.2009.02755.x CrossRefPubMedGoogle Scholar
  25. Gorenflo LJ, Romaine S, Mittermeier RA, Walker-Painemilla K (2012) Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proc Natl Acad Sci 109:8032–8037. doi: 10.1073/pnas.1117511109 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Govindaraju DR (1989) Variation in gene flow levels among predominantly self-pollinated plants. J Evol Biol 2:173–181. doi: 10.1046/j.1420-9101.1989.2030173.x CrossRefGoogle Scholar
  27. Guichoux E, Lagache L, Wagner S et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. doi: 10.1111/j.1755-0998.2011.03014.x CrossRefPubMedGoogle Scholar
  28. Habibollahi H, Noormohammadi Z, Sheidai M, Farahani F (2015) Genetic structure of cultivated flax (Linum usitatissimum L.) based on retrotransposon-based markers. Genetika 47:1111–1122CrossRefGoogle Scholar
  29. Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7:e45170. doi: 10.1371/journal.pone.0045170 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Herbig C, Maier U (2011) Flax for oil or fibre? Morphometric analysis of flax seeds and new aspects of flax cultivation in Late Neolithic wetland settlements in southwest Germany. Veg Hist Archaeobot 20:527–533. doi: 10.1007/s00334-011-0289-z CrossRefGoogle Scholar
  31. Hodel RGJ, Segovia-Salcedo MC, Landis JB et al (2016) The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl Plant Sci 4:1600025. doi: 10.3732/apps.1600025 CrossRefGoogle Scholar
  32. Hohenlohe PA, Catchen J, Cresko WA (2012) Population genomic analysis of model and nonmodel organisms using sequenced RAD tags. In: Pompanon F, Bonin A (eds) Data production and analysis in population genomics: methods and protocols. Humana Press, Totowa, pp 235–260CrossRefGoogle Scholar
  33. Jhala AJ, Bhatt H, Topinka K, Hall LM (2011) Pollen-mediated gene flow in flax (Linum usitatissimum L.): can genetically engineered and organic flax coexist? Heredity 106:557–566. doi: 10.1038/hdy.2010.81 CrossRefPubMedGoogle Scholar
  34. Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632CrossRefPubMedGoogle Scholar
  35. Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genom. doi: 10.1093/bfgp/elr046 Google Scholar
  36. Krieger N (2012) Who and what is a “population”? Historical debates, current controversies, and implications for understanding “population health” and rectifying health inequities. Milbank Q 90:634–681. doi: 10.1111/j.1468-0009.2012.00678.x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kumar S, You FM, Cloutier S (2012) Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genom 13:684. doi: 10.1186/1471-2164-13-684 CrossRefGoogle Scholar
  38. Kumar S, You FM, Duguid S et al (2015) QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theor Appl Genet 128:965–984. doi: 10.1007/s00122-015-2483-3 CrossRefPubMedGoogle Scholar
  39. Mader E, Hopwood J (2013) Pollinator management for organic seed producers. The Xerces Society, Portland, 28 ppGoogle Scholar
  40. Maffi L (2005) Linguistic, cultural, and biological diversity. Annu Rev Anthropol 34:599–617. doi: 10.1146/annurev.anthro.34.081804.120437 CrossRefGoogle Scholar
  41. Mondini L, Noorani A, Pagnotta AM (2009) Assessing plant genetic diversity by molecular tools. Diversity. doi: 10.3390/d1010019 Google Scholar
  42. Nag S, Mitra J, Karmakar PG (2015) An overview on flax (Linum usitatissimum L.) and its genetic diversity. Int J Agric Environ Biotechnol 8:805–8017. doi: 10.5958/2230-732X.2015.00089.3 CrossRefGoogle Scholar
  43. National Inventory (2015, 2017) Accessed 13 May 2015, 5 Apr 2017
  44. Negri V (2005) Agro-biodiversity conservation in Europe: ethical issues. J Agric Environ Ethics 18:3–25. doi: 10.1007/s10806-004-3084-3 CrossRefGoogle Scholar
  45. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi: 10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Peterman W, Brocato ER, Semlitsch RD, Eggert LS (2016) Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages. PeerJ 4:e1813. doi: 10.7717/peerj.1813 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  48. Ragupathy R, Rathinavelu R, Cloutier S (2011) Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genom 12:217. doi: 10.1186/1471-2164-12-217 CrossRefGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  50. Sathya A (2014) The art of naming traditional rice varieties and landraces by ancient tamils. Asian Agri-Hist 18(1):5–21Google Scholar
  51. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi: 10.1038/72708 CrossRefPubMedGoogle Scholar
  52. Smýkal P, Bačová-Kerteszová N, Kalendar R et al (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122:1385–1397. doi: 10.1007/s00122-011-1539-2 CrossRefPubMedGoogle Scholar
  53. Soto-Cerda BJ, Maureira-Butler I, Muñoz G et al (2012) SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed 30:875–888. doi: 10.1007/s11032-011-9670-y CrossRefGoogle Scholar
  54. Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013) Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78. doi: 10.1186/1471-2229-13-78 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Soto-Cerda BJ, Diederichsen A, Duguid S et al (2014) The potential of pale flax as a source of useful genetic variation for cultivated flax revealed through molecular diversity and association analyses. Mol Breed 34:2091–2107. doi: 10.1007/s11032-014-0165-5 CrossRefPubMedPubMedCentralGoogle Scholar
  56. STATISTIK AUSTRIA (2017) Accessed 5 Apr 2017
  57. Stierschneider M, Gaubitzer S, Schmidt J, et al (2016) The Evoltree Repository Centre—a central access point for reference material and data of forest genetic resources. In: Evolution of trees and forest communities: ten years of the Evoltree network. PG Edition, Bordeaux, pp 15–19Google Scholar
  58. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063. doi: 10.1126/science.277.5329.1063 CrossRefPubMedGoogle Scholar
  60. van der Beek JG, Verkerk R, Zabel P, Lindhout P (1992) Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet 84:106–112. doi: 10.1007/BF00223988 CrossRefPubMedGoogle Scholar
  61. Vogl-Lukasser B, Falschlunger G, Blauensteiner P, Vogl CR (2007) Erfahrungswissen über Lokalsorten traditioneller Kulturarten in Ost- und Nordtirol. Department für Nachhaltige Agrarsysteme, Universität für Bodenkultur, WienGoogle Scholar
  62. Wischnitzki E, Burg K, Berenyi M, Sehr EM (2016) Selecting hypomethylated genomic regions using MRE-Seq. In: Hehl R (ed) Plant synthetic promoters. Humana Press, New York City, pp 83–102CrossRefGoogle Scholar
  63. Zalapa JE, Cuevas H, Zhu H et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. doi: 10.3732/ajb.1100394 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Eva-Maria Halbauer
    • 1
  • Valentina Bohinec
    • 1
  • Melanie Wittenberger
    • 1
  • Karin Hansel-Hohl
    • 1
  • Stephan Gaubitzer
    • 1
  • Eva M. Sehr
    • 1
  1. 1.Center for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria

Personalised recommendations