, 213:17 | Cite as

Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping

  • Ying Fu
  • Dongqing Zhang
  • Madeleine Gleeson
  • Yaofeng Zhang
  • Baogang Lin
  • Shuijin Hua
  • Houdong Ding
  • Martin Frauen
  • Jiana Li
  • Wei QianEmail author
  • Huasheng YuEmail author


Increasing seed oil content is one of the most important breeding targets for rapeseed (Brassica napus). In this study, we combined quantitative trait loci (QTL) mapping and marker-trait association analysis to dissect the genetic basis of seed oil content in rapeseed. A doubled haploid (DH) population with 261 lines was grown in two highly contrasting macro-environments, Germany with winter ecotype environment and China with semi-winter ecotype environment, to explore the effect of environment effect of on seed oil content. Notable macro-environment effect was found for seed oil content. 19 QTL for seed oil content were identified across the two macro-environments. For association analysis, a total of 142 rapeseed breeding lines with diverse oil contents were grow in China macro-environment. We identified 23 simple sequence repeat (SSR) markers that were significantly associated with the seed oil content. Comparative analysis revealed that five QTL identified in the DH population, located on chromosomes A03, A09, A10 and C09, were co-localized with 11 significantly associated SSR markers that were identified from the association mapping population. Of which, the QTL on chromosome A10 was found to be homeologous with the QTL on chromosome C09 by aligning QTL confidence intervals with the reference genomes B. napus. Those QTL associated with specific macro-environments provides valuable insight into the genetic regulation of seed oil content and will facilitate marker-assisted breeding of B. napus.


Brassica napus Environment Quantitative trait loci Marker-trait association Seed oil content 



This study was supported financially by Project of Young Researcher Cultivation of Zhejiang Academy of Agricultural Sciences; Project of Hybrid Breeding of High Oil Content in Rapeseed (2011R50026-2); The Key Project of Novel Variety Breeding of Zhejiang Province (2012C12902-1).

Authors’ contributions

HY, WQ and YF designed research; YF, DZ and HD performed research, YF, YZ, BL, and SH analyzed data; YF, MG, JL and FM wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2016_1817_MOESM1_ESM.doc (216 kb)
Supplementary material 1 (DOC 216 kb)
10681_2016_1817_MOESM2_ESM.xls (176 kb)
Supplementary material 2 (XLS 176 kb)


  1. Axelsson T, Shavorskaya O, Lagercrantz U (2001) Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 44:856–864CrossRefGoogle Scholar
  2. Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome. Plant Physiol 144:1827–1842CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91(1):62–67CrossRefPubMedGoogle Scholar
  4. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635CrossRefPubMedGoogle Scholar
  5. Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330CrossRefGoogle Scholar
  6. Burns M, Barnes S, Bowman J, Clarke M, Werner C, Kearsey M (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90:39–48CrossRefPubMedGoogle Scholar
  7. Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123(8):1413–1423CrossRefPubMedGoogle Scholar
  8. Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genet 13:105CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 346:950–953CrossRefGoogle Scholar
  10. Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174CrossRefGoogle Scholar
  11. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  12. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vin-court P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345CrossRefPubMedGoogle Scholar
  13. Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, Andre I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribière N, Trotoux G, Blanchard P, Rivière N, Martinant JP, Pauquet J (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120CrossRefGoogle Scholar
  14. Dier BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphism. Theor Appl Genet 88:662–668CrossRefGoogle Scholar
  15. Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977PubMedGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  17. Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858CrossRefGoogle Scholar
  18. Fu Y, Lu K, Qian L, Mei J, Wei D, Peng X, Xu X, Li J, Frauen M, Dreyer F, Snowdon RJ, Qian W (2015a) Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet 128:1429–1437Google Scholar
  19. Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, Li X, Qian W (2015b) Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep 5:14407CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hallauer AR, Miranda FJB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames, p 468Google Scholar
  21. Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53(4):793–802CrossRefGoogle Scholar
  22. Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460CrossRefPubMedGoogle Scholar
  23. Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968CrossRefPubMedGoogle Scholar
  24. Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li C, Li B, Qu C, Yan X, Fu F, Liu L, Chen L, Li J (2011) Analysis of difference QTLs for oil content between two environments in Brassica napus L. Acta Agron Sin 37:249–254Google Scholar
  26. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  27. Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y (2016) A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet 129(6):1203–1215CrossRefPubMedGoogle Scholar
  28. Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. PNAS 107:19585–19590CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ma C, Kimura Y, Fujimoto H, Sakai T, Imamura J, Fu T (2000) Genetic diversity of Chinese and Japanese rapeseed (Brassica napus L.) varieties detected by RAPD markers. Breed Sci 50:257–265CrossRefGoogle Scholar
  30. Mekhedov S, de Ilárduya OM, Ohlrogge J (2000) Toward a functional catalog of the plant genome: a survey of genes for lipid biosynthesis. Plant Physiol 122:389–402CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meng J, Sharpe A, Bowman C, Tian Z, Qian X, Lydiate D (1997) Genetic diversity of Brassica napus accessions mainly from China detected with RFLP markers. Chin J Genet 23:221–232Google Scholar
  32. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970CrossRefPubMedPubMedCentralGoogle Scholar
  33. Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303CrossRefPubMedGoogle Scholar
  34. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  35. Qian L, Qian W, Snowdon RJ (2014) Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genom 15(1):1CrossRefGoogle Scholar
  36. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80CrossRefPubMedGoogle Scholar
  37. SAS and Institute (2000) SAS/STAT user’s guide, version 8. SAS Institute, CaryGoogle Scholar
  38. Si P, Mailer RJ, Galwey N, Turner DW (2003) Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust J Agric Res 54:397–407CrossRefGoogle Scholar
  39. Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H (2012) Design of New genome-and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS ONE 7:e47037CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Frei UK, Wang B, Lai J, Lübberstedt T, Xu M (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162CrossRefPubMedPubMedCentralGoogle Scholar
  41. Teh L, Möllers C (2016) Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar × Oase cross. Theor Appl Genet 129:181–199CrossRefPubMedGoogle Scholar
  42. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefPubMedGoogle Scholar
  43. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264CrossRefGoogle Scholar
  44. Wang SC, Bastern J, Zeng ZB (2006) Windows QTL cartographer version 2.5. North Carolina State University, RaleighGoogle Scholar
  45. Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 8:e80569CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wei DY, Mei JQ, Fu Y, Joseph OD, Li JN, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804CrossRefGoogle Scholar
  47. Yan XY, Li JN, Fu FY, Jin JM, Chen L, Liu LZ (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170(3):355–364CrossRefGoogle Scholar
  48. Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449CrossRefGoogle Scholar
  49. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160CrossRefPubMedGoogle Scholar
  50. Zhao J, Becker HC, Zhang D, Ecke W, Zhang Y (2005) Oil content in a European × Chinese rapeseed population. Crop Sci 45:51–59CrossRefGoogle Scholar
  51. Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006a) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38CrossRefPubMedGoogle Scholar
  52. Zhao JW, Udall JA, Quijada PA, Grau CR, Meng JL, Osborn TC (2006b) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous nonreciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516CrossRefPubMedGoogle Scholar
  53. Zhao W, Park EJ, Chung JW, Park YJ, Chung IM, Ahn JK, Kim GH (2009) Association analysis of the amino acid contents in rice. J Integr Plant Biol 51(12):1126–1137CrossRefPubMedGoogle Scholar
  54. Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421CrossRefPubMedGoogle Scholar
  55. Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng J (2010) Association mapping of seed oil content in Brassica napus and compari-son with quantitative trait loci identified from linkage mapping. Genome 53:908–916CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ying Fu
    • 1
  • Dongqing Zhang
    • 1
  • Madeleine Gleeson
    • 3
  • Yaofeng Zhang
    • 1
  • Baogang Lin
    • 1
  • Shuijin Hua
    • 1
  • Houdong Ding
    • 1
  • Martin Frauen
    • 4
  • Jiana Li
    • 2
  • Wei Qian
    • 2
    Email author
  • Huasheng Yu
    • 1
    Email author
  1. 1.Institute of Crop and Nuclear Technology UtilizationZhejiang Academy of Agricultural SciencesHangzhouChina
  2. 2.College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
  3. 3.Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaAustralia
  4. 4.Norddeutsche Pflanzenzucht Hans-Georg Lembke KGHohenliethGermany

Personalised recommendations