Euphytica

, 213:64 | Cite as

Speed breeding for multiple disease resistance in barley

  • Lee T. Hickey
  • Silvia E. Germán
  • Silvia A. Pereyra
  • Juan E. Diaz
  • Laura A. Ziems
  • Ryan A. Fowler
  • Greg J. Platz
  • Jerome D. Franckowiak
  • Mark J. Dieters
Article

Abstract

To respond faster to the changing climate, evolving pathogens and to feed a global population of 9–10 billion by 2050, plant breeders are exploring more efficient crop improvement strategies. In this study, we applied novel methodology for rapid trait introgression to the European two-rowed barley cultivar Scarlett. Scarlett is widely-grown in Argentina and is preferred for malting and brewing, yet lacks adequate disease resistance. We used four donor lines combining multiple disease resistance (i.e. leaf rust, net and spot forms of net blotch and spot blotch) in a modified backcross strategy, which incorporated both multi-trait phenotypic screens and the rapid generation advance technology ‘speed breeding’, to develop 87 BC1F3:4 Scarlett introgression lines (ILs) within two years. Phenotyping this set of lines in disease nurseries located in Australia and Uruguay revealed the ILs had high levels of multiple disease resistance. Preliminary yield testing of the 12 most promising ILs in Argentina identified three ILs that were significantly higher yielding than Scarlett at Balcarce, whereas all 12 ILs displayed yield equivalent to Scarlett at Tres Arroyos. We propose that this approach is useful to rapidly transfer genes for multiple target traits into adapted cereal cultivars or pyramiding desirable traits in elite breeding material.

Keywords

Rapid generation advance Multiple disease resistance Hordeum vulgare Trait introgression Gene pyramiding 

Supplementary material

10681_2016_1803_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Allard RW (1960) Principles of plant breeding. Wiley, New York, p 485Google Scholar
  2. Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627CrossRefGoogle Scholar
  3. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572CrossRefPubMedGoogle Scholar
  4. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392CrossRefPubMedGoogle Scholar
  5. Costa MR, Tanure JPM, Arruda KMA, Carneiro JES, Moreira MA, Barros EG (2010) Development and characterization of common black bean lines resistant to anthracnose, rust and angular leaf spot in Brazil. Euphytica 176:149–156CrossRefGoogle Scholar
  6. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601CrossRefPubMedGoogle Scholar
  7. Dinglasan E, Godwin I, Mortlock M, Hickey L (2016) Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica 209:693–707CrossRefGoogle Scholar
  8. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47(S3):S154–S163Google Scholar
  9. Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88Google Scholar
  10. Fowler RA, Platz GJ, Bell KL, Fletcher SEH, Franckowiak JD, Hickey LT (2017) Pathogenic variation of Pyrenophora teres f. teres in Australia. Australas Plant Pathol. Accessed 23 Jan 2017Google Scholar
  11. Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301CrossRefGoogle Scholar
  12. Hanson WD (1959) Early generation analysis of lengths of heterozygous chromosome segments around a locus held heterozygous with backcrossing or selfing. Genetics 44:833–837PubMedPubMedCentralGoogle Scholar
  13. Hickey LT, Dieters MJ, DeLacy IH, Kravchuk OY, Mares DJ, Banks PM (2009) Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L) grown under controlled environmental conditions. Euphytica 168:303–310CrossRefGoogle Scholar
  14. Hickey LT, Dieters MJ, DeLacy IH, Christopher MJ, Kravchuk OY, Banks PM (2010) Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica 172:183–195CrossRefGoogle Scholar
  15. Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, Germán S, Fletcher S, Park RF, Singh D, Pereyra S, Franckowiak J (2011) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123:55–68CrossRefPubMedGoogle Scholar
  16. Hickey LT, Wilkinson PM, Knight CR, Godwin ID, Kravchuk OY, Aitken EAB, Bansal UK, Bariana HS, DeLacy IH, Dieters MJ (2012) Rapid phenotyping for adult-plant resistance to stripe rust in wheat. Plant Breed 131:54–61CrossRefGoogle Scholar
  17. Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132:1199–1210PubMedPubMedCentralGoogle Scholar
  18. Johnson R (2004) Marker-assisted selection. Plant Breed Rev 24:293–309Google Scholar
  19. Kilpatrick RA, Baenziger PS, Moseman JG (1981) Multiple inoculation technique for evaluating resistance of single barley seedlings to three fungi. Plant Dis 65:504–506CrossRefGoogle Scholar
  20. McNeal FH, Konzak CF, Smith EP, Täte WS, Russell TS (1971) A uniform system for recording and processing cereal research data. USDA, Washington, DCGoogle Scholar
  21. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  22. O’Connor DJ, Wright GC, Dieters MJ, George DL, Hunter MN, Tatnell JR, Fleischfresser DB (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40:107–114CrossRefGoogle Scholar
  23. Perovic D, Welz G, Förster J, Kopahnke D, Lein V, Löschenberger F, Buerstmayr H, Ordon F (2009) Breeding strategies for wheat improvement: creating semi-dwarf phenotypes with superior fusarium head blight resistance. In: Feldmann F, Alford DV, Furk C (eds), Crop plant resistance to biotic and abiotic factors (2009), ISBN 978-3-941261-05-1; Deutsche Phytomedizinische Gesellschaft, Braunschweig, Germany. pp. 456–461Google Scholar
  24. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113CrossRefGoogle Scholar
  25. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  26. Ragagnin VA, De Souza TLPO, Sanglard DA, Arruda KMA, Costa MR, Alzate-Marin AL, Carneiro JEdS, Moreira MA, De Barros EG (2009) Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breed 128:156–163CrossRefGoogle Scholar
  27. Randhawa HS, Mutti JS, Kidwell K, Morris CF, Chen X, Gill KS (2009) Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. PLoS ONE 4:e5752CrossRefPubMedPubMedCentralGoogle Scholar
  28. Riaz A, Periyannan S, Aitken E, Hickey L (2016) A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12:1–10CrossRefGoogle Scholar
  29. Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JJ (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods 11:13CrossRefPubMedPubMedCentralGoogle Scholar
  30. Robinson H, Hickey L, Richard C, Mace E, Kelly A, Borrell A, Franckowiak J, Fox G (2016) Genomic regions influencing seminal root traits in barley. Plant Genome 9:1–13CrossRefGoogle Scholar
  31. Rosa SB, McCallum BD, Brule-Babel A, Seto-Goh P (2014) Double artificial inoculation of Puccinia triticina for the study of wheat leaf rust resistance. Can J Plant Pathol 36:83–88CrossRefGoogle Scholar
  32. Septiningsih EM, Pamplona AM, Sanchez DL, Maghirang-Rodriguez R, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 gene and beyond. Ann Bot 103:151–160CrossRefPubMedGoogle Scholar
  33. Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238CrossRefGoogle Scholar
  34. Sysoeva MI, Markovskaya EF, Shibaeva TG (2010) Plants under continuous light: a review. Plant Stress 4:5–17Google Scholar
  35. Velez-Ramirez AI, van Leperen W, Vreugdenhil D, Millenaar FF (2011) Plants under continuous light. Trends Plant Sci 16:310–318CrossRefPubMedGoogle Scholar
  36. Wang JK, Singh RP, Braun HJ, Pfeiffer WH (2009) Investigating the efficiency of the single backcrossing breeding strategy through computer simulation. Theor Appl Genet 118:683–694CrossRefPubMedGoogle Scholar
  37. Wang X, Mace ES, Platz GJ, Hunt CH, Hickey LT, Franckowiak JD, Jordan DR (2015) Spot form of net blotch resistance in barley is under complex genetic control. Theor Appl Genet 128:489–499CrossRefPubMedGoogle Scholar
  38. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefPubMedGoogle Scholar
  39. Zadoks JC, Chang TT, Konzak CF (1974) Decimal code for growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  40. Ziems LA, Hickey LT, Hunt CH, Mace ES, Platz GJ, Franckowiak JD, Jordan DR (2014) Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. Theor Appl Genet 127:1199–1212CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Lee T. Hickey
    • 1
  • Silvia E. Germán
    • 2
  • Silvia A. Pereyra
    • 2
  • Juan E. Diaz
    • 2
  • Laura A. Ziems
    • 1
  • Ryan A. Fowler
    • 1
    • 3
  • Greg J. Platz
    • 3
  • Jerome D. Franckowiak
    • 3
    • 4
  • Mark J. Dieters
    • 5
  1. 1.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandSt LuciaAustralia
  2. 2.Instituto Nacional de Investigación AgropecuariaColoniaUruguay
  3. 3.Department of Agriculture Fisheries and ForestryHermitage Research FacilityWarwickAustralia
  4. 4.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulUSA
  5. 5.School of Agriculture and Food SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations