Advertisement

Euphytica

, Volume 212, Issue 2, pp 173–185 | Cite as

Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population

  • Guangfeng Chen
  • Han Zhang
  • Zhiying Deng
  • Rugang Wu
  • Dongmei Li
  • Mingyou Wang
  • Jichun TianEmail author
Article

Abstract

Genome-wide association studies have become a wide spread method of quantitative trait locus identification for many crops, including wheat (Triticum aestivum L.). Its benefit over traditional biparental mapping approaches depends on the extent of linkage disequilibrium (LD) in natural populations. We estimated the genetic diversity, population structure, and LD decay rate in a winter wheat association mapping panel (n = 205) and identified markers associated with thousand-kernel weight (TKW) and related traits. The panel was genotyped with a high-density Illumina iSelect 90 K single nucleotide polymorphism assay. PIC values were 0.047–0.375 with a mean of 0.277. Structural analysis suggested the association mapping panel contained four subpopulations. LD decay rates extended to longer genetic distances within the D genome (11.0 cM) relative to the A and B genomes (1.5 and 1.8 cM, respectively). A total of 271 marker-trait associations (MTAs) were identified for TKW and related traits, explaining 5.49–9.86 % of variation in individual traits. Among them, 11 highly significant markers (p < 0.0001), eight stable markers and twelve multi-trait MTAs were detected. Two stable markers, Ku_c9210_105 for KL and BS00023893_51 for TKW, were detected in three environments. These MTAs could be used for developing cleaved amplified polymorphic sequence markers for molecular marker-assisted selection in wheat breeding programs.

Keywords

Wheat Association mapping Population structure Linkage disequilibrium Thousand-kernel weight 

Notes

Acknowledgments

This research was supported by the Shandong Provincial Agriculture Liangzhong Project Foundation of China (2014 No. 96) and National Natural Science Foundation of China (No. 31171554 and 31301315).

Supplementary material

10681_2016_1750_MOESM1_ESM.xlsx (30 kb)
Supplementary material 1 (XLSX 29 kb)

References

  1. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Maskri AH, Sajjad M, Khan SH (2012) Association mapping: a step forward to discovering new alleles for crop improvement. Int J Agric Biol 14:1537–1546Google Scholar
  3. Botstein D, Wlllte RL, Skolinck M (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–319PubMedPubMedCentralGoogle Scholar
  4. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2637–2645CrossRefGoogle Scholar
  5. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buckler ES IV, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111CrossRefPubMedGoogle Scholar
  7. Chao S, Zhang W, Akhunov E, Sherman J, Ma Y (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23:23–33CrossRefGoogle Scholar
  8. Chen XJ, Min DH, Tauqeer AY, Hu YG (2012) Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR Markers. PLoS ONE 7:e44510CrossRefPubMedPubMedCentralGoogle Scholar
  9. Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A (2014) Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol Breed 34:1563–1578CrossRefGoogle Scholar
  10. Cormier F, Gouis JL, Dubreuil P, Lafarge S, Praud S (2014) A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet 127:2679–2693CrossRefPubMedGoogle Scholar
  11. Cui F, Ding A, Li J, Zhao C, Li X, Feng D, Wang X, Wang L, Gao J, Wang H (2011) Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL? J Genet 90:409–425CrossRefPubMedGoogle Scholar
  12. Cui F, Fan X, Chen M, Zhang N, Zhao C, Zhang W, Han J, Ji J, Zhao X, Yang L, Wang T, Li J (2015) QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theor Appl Genet. doi: 10.1007/s00122-015-2641-7 Google Scholar
  13. Eric M, James JM, Frank AM, Benjamin N, Stephen VF (2011) Genome-wide association study of blood pressure response to methylphenidate treatment of attention-deficit/hyperactivity disorder. Prog Neuro-Psychopharmacol Biol Psychiatr 35:4667–4672Google Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  15. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  16. Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genom 896451Google Scholar
  18. Hao CY, Wang LF, Ge HM, Dong YC, Zhang XY (2011) Genetic diversity and linkage disequilibrium in chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE 6:1–13Google Scholar
  19. Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in adoubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766CrossRefPubMedGoogle Scholar
  20. Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Gene 42:961–967CrossRefGoogle Scholar
  21. Li QF, Zhang Y, Liu TT, Wang FF, Liu K, Chen JS, Tian JC (2015) Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping. Mol Breed 35:194Google Scholar
  22. Liu K, Muse SV (2005) Power Marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  23. Lopes MS, Dreisigacker S, Peña RJ, Sukumaran S, Reynolds MP (2014) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet. doi: 10.1007/s00122-014-2444-2 Google Scholar
  24. Lu YL, Yan JB, Claudia T, Guimaraes Suketoshi T, Hao ZF (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115CrossRefPubMedGoogle Scholar
  25. Nyquist WE, Nyquist RJ, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–254CrossRefGoogle Scholar
  26. Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS, Misra SC (2013) Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190:117–129CrossRefGoogle Scholar
  27. Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494Google Scholar
  28. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  29. Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupt P (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429CrossRefPubMedGoogle Scholar
  30. Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet. doi: 10.1007/s00122-011-1583-y Google Scholar
  31. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 80:1516–1517CrossRefGoogle Scholar
  32. Sajjad M, Khan SH, Kazi AM (2012) The low down on association mapping in hexaploid wheat (Triticum aestivum L.). J. Crop Sci. Biotech. (September) 15:147–158CrossRefGoogle Scholar
  33. Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene 9 environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401–408CrossRefGoogle Scholar
  34. Sorrells ME, Yu J (2009) Linkage disequilibrium and association mapping in the Triticeae. In: Muehlbaucer GJ (ed) Genetics and Genomics of the Triticeae Feuillet C. Springer, Gatersleben, pp 655–683CrossRefGoogle Scholar
  35. Sukumaran S, Yu J (2014) Association mapping of genetic resources: achievements and future perspectives. Genomics of plant genetic resources. Springer, Netherlands, pp 207–235CrossRefGoogle Scholar
  36. Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP (2014) Genome wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet. doi: 10.1007/s00122-014-2435-3 Google Scholar
  37. Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624CrossRefGoogle Scholar
  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  39. Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:6977–6995CrossRefGoogle Scholar
  40. Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730CrossRefPubMedGoogle Scholar
  41. Wang L, Ge H, Hao C, Dong Y, Zhang X (2012) Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS ONE 7(2)Google Scholar
  42. Wang SC, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Guedira GB, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene associations. Plant Cell 16:2719–2733CrossRefPubMedPubMedCentralGoogle Scholar
  44. Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C, Reif JC (2011) Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet 123:1121–1131CrossRefPubMedGoogle Scholar
  45. Yao J, Wang L, Liu L, Zhao C, Zheng Y (2009) Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137:677–687CrossRefGoogle Scholar
  46. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Röder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Frontiers. Plant Sci 6:644Google Scholar
  47. Zhang D, Bai G, Zhu C, Yu J, Carver BF (2010) Genetic diversity, population structure, linkage disequilibrium in U.S. elite winter wheat. Plant Genome 3:1177–1186CrossRefGoogle Scholar
  48. Zhang KP, Wang JJ, Zhang LY, Rong CW, Zhao FW, Peng T (2013) Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS ONE 8:e57853CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang XY, Deng ZY, Wang YR, Li JF, Tian JC (2014) Unconditional and conditional QTL analysis of kernel weight related traits in wheat (Triticum aestivum L.) in multiple genetic backgrounds. Genetica 142:371–379CrossRefPubMedGoogle Scholar
  50. Zheng BS, Le GJ, Leflon M, Rong WY, Laperche A, Brancourt HM (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet 121:1501–1517CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Guangfeng Chen
    • 1
    • 2
  • Han Zhang
    • 1
    • 3
  • Zhiying Deng
    • 1
  • Rugang Wu
    • 4
  • Dongmei Li
    • 2
  • Mingyou Wang
    • 2
  • Jichun Tian
    • 1
    Email author
  1. 1.State Key Laboratory of Crop BiologyGroup of Quality Wheat Breeding of Shandong Agricultural UniversityTai’anChina
  2. 2.College of Ecology and Garden ArchitectureDezhou UniversityDezhouChina
  3. 3.Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
  4. 4.Dezhou Academy of Agricultural SciencesDezhouChina

Personalised recommendations