Skip to main content
Log in

Dwarf hybrids of the bioenergy crop Ricinus communis suitable for mechanized harvesting reveal differences in morpho-physiological characteristics and seed metabolic profiles

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Ricinus communis, also known as castor bean or castor plant, is a crop that produces seeds containing non-edible oil used widely in the chemical industry and the bioenergy sector. Varieties or hybrids that are suitable for mechanized harvesting may diminish the production cost boosting large scale production of the crop in new areas. In this study, we describe extensively the morphological characteristics and the ex situ performance of four newly developed R. communis hybrids (H11, H12, H13, and H14) focusing on plant architecture in order to facilitate mechanized harvesting. In addition, hybrid germination rate at low and optimal temperature was evaluated aiming to determine a minimal temperature requirement for early spring sowing in temperate climates. Seed metabolic profiling using LC–MS/MS analysis revealed the presence of more than 60 different primary and secondary metabolites, at varied levels in each hybrid, including amino acids, fatty acids, flavonols, flavones, flavanones, phenyl propanoids and catecholamines such as dopamine, many of which are reported for the first time in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alagna F, Mariotti R, Panara F, Caporali S, Urbani S, Veneziani G, Esposto S, Taticchi A, Rosati A, Rao R (2012) Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biol 12(1):162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjani K (2012) Castor genetic resources: a primary gene pool for exploitation. Ind Crops Prod 35(1):1–14

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Baldanzi M, Pugliesi C (1998) Selection for non-branching in castor Ricinus communis L. Plant Breed 117(4):392–394

    Article  Google Scholar 

  • Baldanzi M, Fambrini M, Pugliesi C (2003) Redesign of the castorbean plant body plan for optimal combine harvesting. Ann Appl Biol 142(3):299–306

    Article  Google Scholar 

  • Baldanzi M, Myczkowski ML, Salvini M, Macchia M (2015) Description of 90 inbred lines of castor plant (Ricinus communis L.). Euphytica 202(1):13–33

    Article  Google Scholar 

  • Bartley L, Ronald P (2009) Plant and microbial research seeks biofuel production from lignocellulose. Calif Agric 63(4):178–184

    Article  Google Scholar 

  • Bassi R, Sharma SS (1993a) Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann Bot 72(2):151–154

    Article  CAS  Google Scholar 

  • Bassi R, Sharma SS (1993b) Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33(6):1339–1342

    Article  CAS  Google Scholar 

  • Campos FAP, Nogueira F, Cardoso KC, Costa GCL, Del Bem LEV, Domont GB, Da Silva MJ, Moreira RC, Soares AA, Jucà TL (2010) Proteome analysis of castor bean seeds. Pure Appl Chem 82(1):259–267

    Article  CAS  Google Scholar 

  • Chakravartula SV, Guttarla N (2007) Identification and characterization of phenolic compounds in castor seed. Nat Prod Res 21(12):1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28(9):951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Martinez JM, Velasco L (1998) Castor. Technological innovations in major world oil crops, vol 1. Springer, New York, pp 237–265

    Google Scholar 

  • Gajera BB, Kumar N, Singh AS, Punvar BS, Ravikiran R, Subhash N, Jadeja GC (2010) Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind Crops Prod 32(3):491–498

    Article  CAS  Google Scholar 

  • Goodrum JW, Geller DP (2005) Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity. Bioresour Technol 96(7):851–855

    Article  CAS  PubMed  Google Scholar 

  • Goumenaki E, Karidis Z, Paschalidis K (2010) Assessment of tropospheric ozone impact on crops in crete (Greece) using snap bean as bioindicator. In: XXVIII international horticultural congress on science and horticulture for people (IHC2010): International symposium on 938, pp 401–407

  • Goyal N, Pardha-Saradhi P, Sharma GP (2014) Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environ Monit Assess 186(11):7941–7948

    Article  CAS  PubMed  Google Scholar 

  • Kallamadi PR, Nadigatla VPRGR, Mulpuri S (2015) Molecular diversity in castor (Ricinus communis L.). Ind Crops Prod 66:271–281

    Article  CAS  Google Scholar 

  • Kapazoglou A, Drosou V, Nitsos CK, Bossis I, Tsaftaris A (2013) Biofuels get in the fast lane: developments in plant feedstock production and processing. Adv Crop Sci Technol 1:117

    Google Scholar 

  • Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plants 17(3):203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  • Knowles P (1949) Castor beans: studied for potential values as oil crop for California production. Calif Agric 3(3):13–14

    Google Scholar 

  • Koutroubas SD, Papakosta DK, Doitsinis A (2000) Water requirements for castor oil crop. J Agron Crop Sci 184(1):33–41

    Article  Google Scholar 

  • Kulshrestha K, Talati JG (2014) Molecular characterization of castor (Ricinus communis L.) genotypes through SSR and ISSR markers. Indian J Agric Biochem 27(1):20–24

    CAS  Google Scholar 

  • Kumar PV, Ramakrishna YS, Rao BVR, Victor US, Srivastava NN, Subba Rao AVM (1997) Influence of moisture, thermal and photoperiodic regimes on the productivity of castor beans (Ricinus communis L.). Agric Meteorol 88:279–289

    Article  Google Scholar 

  • Laureti D, Fedeli AM, Scarpa GM, Marras GF (1998) Performance of castor (Ricinus communis L.) cultivars in Italy. Ind Crops Prod 7(2):91–93

    Article  Google Scholar 

  • Lavanya C, Chandramohan Y (2003) Combining ability and heterosis for seed yield and yield components in castor. J Oilseeds Res 20:220–224

    Google Scholar 

  • Maltman DJ, Simon WJ, Wheeler CH, Dunn MJ, Wait R, Slabas AR (2002) Proteomic analysis of the endoplasmic reticulum from developing and germinating seed of castor (Ricinus communis). Electrophoresis 23(4):626–639

    Article  CAS  PubMed  Google Scholar 

  • Maltman DJ, Gadd SM, Simon WJ, Slabas AR (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7(9):1513–1528

    Article  CAS  PubMed  Google Scholar 

  • Matysik J, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  • Milani M, Medeiros Nobrega MB (2013) Castor breeding. Agricultural and biological sciences. In: Andersen SB (ed) Plant breeding from laboratories to fields. doi:10.5772/56216

  • Mokhtari K, Rufino-Palomares EE, Reyes-Zurita FJ, Pérez-Jiménez A, Figuera C, García-Salguero L, Medina PP, Peragón J, Lupiáñez JA (2015) Maslinic acid, a triterpene from olive, affects the antioxidant and mitochondrial status of B16F10 cells grown under stressful conditions. Evid-Based Complem Altern Med

  • Naidu BP, Paleg LG, Aspinall D, Jennings AC, Jones GP (1991) Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30(2):407–409

    Article  CAS  Google Scholar 

  • Nogueira FbCS, Palmisano G, Soares EL, Shah M, Soares AA, Roepstorff P, Campos FAP, Domont GB (2012) Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development. J Proteom 75(6):1933–1939

    Article  CAS  Google Scholar 

  • Paleg LG, Aspinall D (1981) The physiology and biochemistry of drought resistance in plants. Academic Press

  • Paschalidis KA, Moschou PN, Toumi I, Roubelakis-Angelakis KA (2009) Polyamine anabolic/catabolic regulation along the woody grapevine plant axis. J Plant Physiol 166(14):1508–1519

    Article  CAS  PubMed  Google Scholar 

  • Paschalidis KA, Imene T, Panagiotis MN, Roubelakis-Angelakis KA (2010) ABA-dependent amine oxidases-derived H2O2 affects stomata conductance. Plant signal behav 5(9):1153–1156

    Article  Google Scholar 

  • Patel P, Pathak H (2011) Genetics of resistance to wilt in castor caused by Fusarium Oxysporum F. Sp. Ricini Nanda and Prasad. Agric Sci Dig 31(1):30–34

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research: an update. Bioinformatics 28(19):2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1):9–17

    Article  Google Scholar 

  • Rojas-Barros P, de Haro A, Muñoz J, Fernández-Martínez JM (2004) Isolation of a natural mutant in castor with high oleic/low ricinoleic acid content in the oil. Crop Sci 44(1):76–80

    Article  CAS  Google Scholar 

  • Savy Filho A, Amorim EP, Ramos NP, Martins ALM, Cavichioli JC (2007) IAC-2028: new castor bean cultivar. Pesqui Agropecu Bras 42(3):449–452

    Article  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metalal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101(3):477–482

    Article  CAS  Google Scholar 

  • Severino LS, Auld DL (2013) A framework for the study of the growth and development of castor plant. Ind Crops Prod 46:25–38

    Article  Google Scholar 

  • Severino LS, Auld DL, Baldanzi M, Cândido MJ, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C (2012) A review on the challenges for increased production of castor. Agron j 104(4):853–880

    Article  Google Scholar 

  • Singh AS, Kumari S, Modi AR, Gajera BB, Narayanan S, Kumar N (2015) Role of conventional and biotechnological approaches in genetic improvement of castor (Ricinus communis L.). Ind Crops Prod 74:55–62

    Article  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18(10):2767–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snider JL, Collins GD, Whitaker J, Chapman KD, Horn P, Grey TL (2014) Seed size and oil content are key determinants of seedling vigor in Gossypium hirsutum. J Cotton Sci 18:1–9

    Google Scholar 

  • Somerville C (2007) Biofuels. Curr biol 17(4):R115–R119

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomar Rukam S, Parakhia MV, Kavani RH, Dobariya KL, Thakkar JR, Rathod VM, Dhingani RM, Golakiya BA (2014) Characterization of castor (Ricinus communis L.) genotypes using different markers. Res J Biotechnol 9(2):6–13

    Google Scholar 

  • Trantas EA, Koffas MA, Xu P, Ververidis F (2015) When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci 6

  • Van De Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci 92(15):6743–6747

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega-Sanchez ME, Ronald PC (2010) Genetic and biotechnological approaches for biofuel crop improvement. Curr Opin Biotechnol 21(2):218–224

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Li G-r, Zhang Z-y, Peng M, Y-s Shang, Luo R, Chen Y-s (2013) Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochem Syst Ecol 51:301–307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support of the JONAH-FUEL (3176) by Greece and the European Regional Development Fund within the program ‘Bilateral R&D cooperation between Greece and Israel 2013–2015’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Hilioti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkouropoulos, G., Kapazoglou, A., Drosou, V. et al. Dwarf hybrids of the bioenergy crop Ricinus communis suitable for mechanized harvesting reveal differences in morpho-physiological characteristics and seed metabolic profiles. Euphytica 210, 207–219 (2016). https://doi.org/10.1007/s10681-016-1702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1702-6

Keywords

Navigation